Five solvent-free polymorphs of a pharmaceutical compound were discovered during polymorph screening. Out of the five polymorphs, only one has strong intermolecular N-H···N hydrogen bonding, whereas the others exhibit only weak C-H···N and π-π stacking interactions in addition to all the other weak C-H···X and van der Waals interactions. The relative thermodynamic stability relationships among the polymorphs are not intuitive and quite complex due to enantiotropic phase behavior. For instance, the polymorph with the most efficient packing (i.e., highest density) is not always the most thermodynamically stable form, and the polymorph with strong intermolecular interactions is not thermodynamically more stable than the polymorph with weak intermolecular interactions at all temperatures. Nevertheless, systematic examination and comparison of the molecular packing and intermolecular interactions of these polymorphs provide insight into the importance of H-bonding and packing efficiency to the thermodynamic stability of a crystalline form, and how these effects are dependent on temperature. This study seeks to correlate single-crystal structure features with experimentally established thermodynamic stability, and provides an example where a polymorph with only van der Waals forces and weak intermolecular interactions can be more stable than a polymorph that displays strong H-bonding in its structural make-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.24135 | DOI Listing |
J Am Chem Soc
January 2025
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, 91058 Erlangen, Germany.
Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).
View Article and Find Full Text PDFACS Nano
January 2025
Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The safety of the P2-type layered transition metal oxides (P2-NaTMO), a promising cathode material for sodium-ion batteries (SIBs), is a prerequisite for grid-scale energy storage systems. However, previous thermal runaway studies mainly focused on morphological changes resulting from gas production detection and thermogravimetric analysis, while the structural transition and chemical reactions underlying these processes are still unclear. Herein, a comprehensive methodology to unveil an interplay mechanism among phase structures, interfacial microcrack, and thermal stability of the charged P2-NaNiMnO (NNMO) and the P2-NaNiLiMnO (NNMO-Li) at elevated temperatures is established.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, National Synchrotron Radiation Laboratory, Center for Micro and Nanoscale Research and Fabrication, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, P. R. China.
Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO nanolayer on ZrO-SiO fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!