We present a bottom-up coarse-graining procedure to construct mesoscopic force fields directly from microscopic dynamics. By grouping many bonded atoms in the molecular dynamics (MD) system into a single cluster, we compute both the conservative and non-conservative interactions between neighboring clusters. In particular, we perform MD simulations of polymer melts to provide microscopic trajectories for evaluating coarse-grained (CG) interactions. Subsequently, dissipative particle dynamics (DPD) is considered as the effective dynamics resulting from the Mori-Zwanzig (MZ) projection of the underlying atomistic dynamics. The forces between finite-size clusters have, in general, both radial and transverse components and hence we employ four different DPD models to account differently for such interactions. Quantitative comparisons between these DPD models indicate that the DPD models with MZ-guided force fields yield much better static and dynamics properties, which are consistent with the underlying MD system, compared to standard DPD with empirical formulae. When the rotational motion of the particle is properly taken into account, the entire velocity autocorrelation function of the MD system as well as the pair correlation function can be accurately reproduced by the MD-informed DPD model. Since this coarse-graining procedure is performed on an unconstrained MD system, our framework is general and can be used in other soft matter systems in which the clusters can be faithfully defined as CG particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4sm01387e | DOI Listing |
Cancer Cell Int
January 2025
Department of Blood Transfusion, China-Japan, Union Hospital of Jilin University, Changchun, 130033, P.R. China.
Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
Background: Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFOncol Lett
February 2025
Division of Surgery, Orthopaedics and Oncology, Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
Pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis, and biomarkers to guide treatment decisions in PDAC are generally lacking. Intratumoural expression of dihydropyrimidine dehydrogenase (DPD) is a potential prognostic parameter in patients with PDAC undergoing surgical resection and postoperative chemotherapy. In the present study, DPD was analysed by immunohistochemistry of a tissue microarray platform including a real-world cohort of 495 patients with PDAC who had undergone resection with curative intent at any of three tertiary centres, including Northern, Western and Southeastern regions of Sweden, between 1993 and 2019.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Province of Pordenone, Italy.
Dihydropyrimidine dehydrogenase (DPD, encoded by the gene) is the rate-limiting enzyme for the detoxification of fluoropyrimidines (FLs). Rs4294451 is a regulatory polymorphism that has recently been functionally characterized and associated with increased DPD expression in the liver. The aim of the present study was to test the clinical implications of being a carrier of rs4294451 in a cohort of 645 FL-treated colorectal cancer patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!