MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries.

Angew Chem Int Ed Engl

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China).

Published: November 2014

MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high-performance anode in Na-ion batteries. By controlling the cut-off voltage to the range of 0.4-3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g(-1) at 0.05 A g(-1) , 300 mAh g(-1) at 1 A g(-1) , and 195 mAh g(-1) at 10 A g(-1) . An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na(+) storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na(+) ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high-rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201407898DOI Listing

Publication Analysis

Top Keywords

mos2 nanoflowers
12
nanoflowers expanded
12
expanded interlayers
8
na-ion batteries
8
mos2 layers
8
mos2
6
interlayers high-performance
4
high-performance anodes
4
anodes sodium-ion
4
sodium-ion batteries
4

Similar Publications

Bacterial resistance, accelerated by the misuse of antibiotics, remains a critical concern for public health, promoting an ongoing exploration for cost-effective and safe antibacterial agents. Recently, there has been significant focus on various nanomaterials for the development of alternative antibiotics. Among these, molybdenum disulfide (MoS) has gained attention due to its unique chemical, physical, and electronic properties, as well as its semiconducting nature, biocompatibility, and colloidal stability, positioning it as a promising candidate for biomedical research.

View Article and Find Full Text PDF

"Bridge" interface design modulates high-performance cellulose-based integrated flexible supercapacitors.

Int J Biol Macromol

December 2024

School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; Hubei Key Laboratory of Automotive Power Train and Electronic control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Flexible supercapacitors offer significant potential for powering next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexibility conditions is limited by the weak bonding between neighboring layers, posing a major obstacle to their practical application. In this paper, natural coniferous pulp cellulose was successfully modified with ethylenediamine and NiSe/Cell-NH/MoS cellulose flexible electrodes (NCMF) were fabricated by phase transfer and hydrothermal methods.

View Article and Find Full Text PDF

Water pollution resulting from Hg(II) ions has garnered significant global concern for public health. The flexibility and simplicity of design, cost savings, and ease of operation with adaptive designs provide adsorption with a considerable advantage over other processes. However, MoS is hydrophobic in nature, which limits its efficiency in the removal of Hg(II) ions from water.

View Article and Find Full Text PDF

Rational design of MoS2/CNT heterostructure with rich S-vacancy for enhanced HER performance.

J Chem Phys

November 2024

Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.

Molybdenum disulfide (MoS2) is a promising electrocatalyst for the hydrogen evolution reaction (HER) due to excellent stability and low cost. However, the utilization in electrocatalytic hydrogen evolution is constrained by inherent shortcomings, including fewer edge active sites, poor dispersion, and electrical conductivity. In this work, MoS2 was compounded with carbon nanotubes (CNTs), which are known for their high specific surface area and excellent electrical conductivity.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS-NG composite, where MoS nanoflowers were uniformly grown on graphene oxide (GO) through PANI modification, resulting in an increased interlayer spacing of MoS. This expanded spacing exposed more active sites, enhancing polysulfide adsorption and catalytic conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!