The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174501PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105837PLOS

Publication Analysis

Top Keywords

diazotrophic pseudomonas
20
pseudomonas isolates
12
pseudomonas
10
stutzeri
9
pseudomonas stutzeri
8
isolated distal
8
nfi diazotrophic
8
stutzeri strains
8
putative nfis
8
stutzeri dsm
8

Similar Publications

Assessing the impact of arsenic on symbiotic and free-living PGPB: plant growth promoting traits, bacterial compatibility and adhesion on soybean seed.

World J Microbiol Biotechnol

December 2024

Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.

Arsenic (As) contamination in agricultural groundwater and soil is a significant economic and health problem worldwide. It inhibits soybean (Glycine max (L.) Merr.

View Article and Find Full Text PDF

Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) are of increased interest as they offer sustainable alternatives to the more common chemical fertilisers. Research, however, has increased into the use of PGPB as bioinoculants to improve yields. Legumes are known to interact with diazotroph PGPB which increase nutrient uptake, prevent pathogenic infections, and actively fix nitrogen.

View Article and Find Full Text PDF

Bacterial endosymbionts of a nitrogen-fixing yeast JGTA-S1 - insights into a yet unknown micro-ecosystem.

Mol Omics

December 2024

Department of Biotechnology and Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata - 700019, India.

JGTA-S1 is a yeast strain capable of fixing nitrogen and improving nitrogen nutrition in rice plants because of its nitrogen-fixing endobacteria, namely () and sp. To gain a deeper understanding of yeast endosymbionts, we conducted a whole-genome shotgun metagenomic analysis of JGTA-S1 cells grown under conditions of nitrogen sufficiency and deficiency. Our results showed that the endosymbiont population varied depending on the nitrogen regime.

View Article and Find Full Text PDF

Limited dependence on soil nitrogen fixation as subtropical forests develop.

Microbiol Res

August 2024

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Soil nitrogen (N) fixation, driven by microbial reactions, is critical to support the entrance of nitrogen in nutrient poor and pioneer ecosystems. However, how and why N fixation and soil diazotrophs evolve as forests develop remain poorly understood. Here, we used a 60-year forest rewilding chronosequence and found that soil N fixation activity gradually decreased with increasing forest age, experiencing dramatic drops of 64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!