Supported core-shell nanobiosensors for quantitative fluorescence imaging of extracellular pH.

Chem Commun (Camb)

Département de chimie, Faculté de Sciences et Génie, Université Laval, Québec (QC), Canada G1V 0A6.

Published: November 2014

Covalent "click" cycloaddition was used to functionalize silica substrates with pH-sensitive nanoparticles, thus producing uniform and highly luminescent analytical devices usable in both commercial fluorimeters and fluorescence microscopes. Quantitative and spatially-resolved extracellular pH measurements were successfully achieved on live cardiac fibroblasts with these novel ion-sensitive surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc06075jDOI Listing

Publication Analysis

Top Keywords

supported core-shell
4
core-shell nanobiosensors
4
nanobiosensors quantitative
4
quantitative fluorescence
4
fluorescence imaging
4
imaging extracellular
4
extracellular covalent
4
covalent "click"
4
"click" cycloaddition
4
cycloaddition functionalize
4

Similar Publications

Internal Nanocavity Regulation of Embedded Rare Earth Up-Conversion Nanoparticles for HO Production Operable at Up to 780 nm.

Small

January 2025

XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.

View Article and Find Full Text PDF

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.

View Article and Find Full Text PDF

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

Core-shell structures demonstrate superior capability in customizing properties across multiple scales, offering valuable potential in catalysis, medicine, and performance materials. Integrating functional nanoparticles in a spatially controlled manner is particularly appealing for developing sophisticated architectures that support heterogeneous characteristics and tandem reactions. However, creating such complex structures with site-specific features remains challenging due to the dynamic microenvironment during the shell-forming process, which considerably impacts colloidal particle assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!