The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408176PMC
http://dx.doi.org/10.1111/1751-7915.12176DOI Listing

Publication Analysis

Top Keywords

water column
12
bacterial communities
8
north sea
8
oil spill
8
pseudoalteromonas spp
8
oil
6
generalist hydrocarbon-degrading
4
bacterial
4
hydrocarbon-degrading bacterial
4
communities oil-polluted
4

Similar Publications

Pervious concrete for treatment of acid mine drainage: Neutralization of pH and removal of dissolved iron, aluminum, manganese, and copper.

J Environ Manage

January 2025

Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA. Electronic address:

Pervious concrete has shown potential in neutralizing wastewater and stormwater, and this study was conducted to determine the effectiveness of pervious concrete at removing heavy metals and neutralizing acid from an AMD source. The removal of aluminum, manganese, iron, and copper from natural and synthetic AMD sources by pervious concrete cubes at beaker scale was tracked. Pervious concrete cylinders were also used to model length requirements for a permeable reactive barrier to treat field-scale AMD.

View Article and Find Full Text PDF

The inhibitory effect of Hypericum japonicum on H9N2 avian influenza virus.

Adv Biotechnol (Singap)

November 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.

The H9N2 subtype of avian influenza virus (AIV) causes severe immunosuppression and high mortality in view of its frequent co-infection with other pathogens, resulting in significant economic losses in the poultry industry. Current vaccines provide suboptimal immune protection against H9N2 AIV owing to antigenic variations, highlighting the urgent need for safe and effective antiviral drugs for the prevention and treatment of this virus. This study aimed to investigate the inhibitory effects of Hypericum japonicum extract on H9N2 AIV.

View Article and Find Full Text PDF

Therapeutic drugs and multivalent vaccines based on the delivery of mRNA via lipid nanoparticle (LNP) technologies are expected to dominate the biopharmaceutical industry landscape in the coming years. Many of these innovative therapies include several nucleic acid components (e.g.

View Article and Find Full Text PDF

The opportunistic pathogen sp. ATCC 39006 (S39006) is a rod-shaped, motile, Gram-negative bacterium that produces a 𝛽-lactam antibiotic (a carbapenem) and a bioactive red-pigmented tripyrrole antibiotic, prodigiosin. It is also the only known enterobacterium that naturally produces intracellular gas vesicles (GVs), enabling cells to float in static water columns.

View Article and Find Full Text PDF

Biokinetic soft-sensing using Thiothrix and Ca. Microthrix bacteria to calibrate secondary settling, aeration and NO emission digital twins.

Water Res

January 2025

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; SWING - Department of Built Environment, Oslo Metropolitan University, St Olavs plass 0130, Oslo, Norway. Electronic address:

Climate resilience in water resource recovery facilities (WRRFs) necessitates improved adaptation to shock-loading conditions and mitigating greenhouse gas emission. Data-driven learning methods are widely utilised in soft-sensors for decision support and process optimization due to their simplicity and high predictive accuracy. However, unlike for mechanistic models, transferring machine-learning-based insights across systems is largely infeasible, which limits communication and knowledge sharing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!