Role of organic cation transporters (OCTs) in the brain.

Pharmacol Ther

INSERM U1130, Paris F-75005, France; CNRS UMR 8246, Paris F-75005, France; Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France. Electronic address:

Published: February 2015

Organic cation transporters (OCTs) are polyspecific facilitated diffusion transporters that contribute to the absorption and clearance of various physiological compounds and xenobiotics in mammals, by mediating their vectorial transport in kidney, liver or placenta cells. Unexpectedly, a corpus of studies within the last decade has revealed that these transporters also fulfill important functions within the brain. The high-affinity monoamine reuptake transporters (SERT, NET and DAT) exert a crucial role in the control of aminergic transmission by ensuring the rapid clearance of the released transmitters from the synaptic cleft and their recycling into the nerve endings. Substantiated evidence indicate that OCTs may serve in the brain as a compensatory clearance system in case of monoamine spillover after high-affinity transporter blockade by antidepressants or psychostimulants, and in areas of lower high-affinity transporter density at distance from the aminergic varicosities. In spite of similar anatomical profiles, the two brain OCTs, OCT2 and OCT3, show subtle differences in their distribution in the brain and their functional properties. These transporters contribute to shape a variety of central functions related to mood such as anxiety, response to stress and antidepressant efficacy, but are also implicated in other processes like osmoregulation and neurotoxicity. In this review, we discuss the recent knowledge and emerging concepts on the role of OCTs in the uptake of aminergic neurotransmitters in the brain and in these various physiological functions, focusing on the implications for mental health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2014.09.008DOI Listing

Publication Analysis

Top Keywords

organic cation
8
cation transporters
8
transporters octs
8
transporters contribute
8
high-affinity transporter
8
transporters
6
brain
6
octs
5
role organic
4
octs brain
4

Similar Publications

Supramolecular oleogels, in which low-molecular weight oleogelators self-assemble into various nanostructures through non-covalent interactions, have witnessed increasing research activity in various fields of science, including food, cosmetics or remediation of marine oil spills. Herein, we report a simple scalable and environmentally friendly carbohydrate-based oleogelator, namely, the sodium salt of ,'-dimethyl β- glucosyl barbiturate (GlcBMe) that self-assembles through sonication to induce the gelation of polar organic solvent and later of non-polar vegetable oils by cationic exchange with quaternary ammonium surfactants. Water-soluble GlcBMe was capable of forming self-assembled fibrillar network bridging insoluble particles in the oil by sonication in the presence of a small amount of water.

View Article and Find Full Text PDF

Multifunctional quaternary ammonium-modified TEMPO-oxidized cellulose nanofibers and MIL-100 with encapsulated laccase for efficient removal of anionic arund cationic dyes in wastewater.

Int J Biol Macromol

January 2025

Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran. Electronic address:

The increasing prevalence of micropollutants like cationic and anionic dyes in wastewater creates an influential environmental challenge, mainly due to their toxic effects and persistence. Current methods often lack the efficiency and versatility to cope with a wide variety of contaminants. This study explores the modification of TEMPO-oxidized cellulose nanofibers (TOCNF) using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) to enhance their cationic properties.

View Article and Find Full Text PDF

Critical source areas (CSAs) can act as a source of phosphorus (P) in surface waters by releasing soil P to porewater during frequent rainfall events. The extent of P release under short-term, frequent submergence has not been systematically studied in CSAs in New Zealand. A study was conducted to explore the potential of three contrasting dairy and sheep/beef farm soils (Recent, Pallic and Allophanic soils) to release P to porewater and pondwater under short-term and frequent submergence.

View Article and Find Full Text PDF

Wade's rules are a well-established tool for the description of the geometry of inorganic clusters. Among others, they state that a decrease or increase in charge is always accompanied by a change in the number of skeletal electron pairs (SEPs). This work reports the synthesis of the first cationic chalcogenaboranes closo-[12-X-2-IPr-1-EB11H10]BF4 (X = H, I; E = S, Se 3a/b, 4a/b) featuring the same SEP count as their neutral precursors, EB11H11, but bearing a positive charge.

View Article and Find Full Text PDF

Introduction: Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!