Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reversible proton- and electron-transfer steps are crucial for various chemical transformations. The electron-reservoir behavior of redox non-innocent ligands and the proton-reservoir behavior of chemically non-innocent ligands can be cooperatively utilized for substrate bond activation. Although site-decoupled proton- and electron-transfer steps are often found in enzymatic systems, generating model metal complexes with these properties remains challenging. To tackle this issue, we present herein complexes [(cod-H)M(μ-L(2-)) M(cod-H)] (M = Pt(II), [1] or Pd(II), [2], cod = 1,5-cyclooctadiene, H2L = 2,5-di-[2,6-(diisopropyl)anilino]-1,4-benzoquinone), in which cod acts as a proton reservoir, and L(2-) as an electron reservoir. Protonation of [2] leads to an unusual tetranuclear complex. However, [1] can be stepwise reversibly protonated with up to two protons on the cod-H ligands, and the protonated forms can be stepwise reversibly reduced with up to two electrons on the L(2-) ligand. The doubly protonated form of [1] is also shown to react with OMe(-) leading to an activation of the cod ligands. The site-decoupled proton and electron reservoir sources work in tandem in a three-way cooperative process that results in the transfer of two electrons and two protons to a substrate leading to its double reduction and protonation. These results will possibly provide new insights into developing catalysts for multiple proton- and electron-transfer reactions by using metal complexes of non-innocent ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201403276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!