Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The role of inflammation and immunity in COPD treatment is increasingly being recognized. The relationship between anti-inflammation/immunoregulation and emphysema in COPD lungs remains to be elucidated. The aim of this study was to investigate the effects of azithromycin (Azm) on the development of emphysema in smoking-induced COPD in rats.
Methods: Sprague-Dawley rats (n = 50) were randomly assigned to normal, COPD, saline-treated, Azm-treated, and levofloxacin-treated (Lev) groups. The effects of treatment were assessed by measuring the levels of vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assay and measuring the numbers of neutrophil and macrophage in bronchoalveolar lavage fluid, vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR2) protein expression by western blotting. Lung function measurements and histopathological evaluations (mean linear intercept and destructive index) were performed.
Results: FEV0.3/FVC and peak expiratory flow were lower in the COPD group than in the normal group. Mean linear intercept and destructive index were lower in the Azm-treated group than in the COPD, saline-treated, and Lev-treated groups. The numbers of neutrophil and macrophage in bronchoalveolar lavage fluid were lower in the Azm-treated group than in the COPD, saline-treated, and Lev-treated groups. As confirmed by western blotting, the levels of VEGF in lung homogenates were higher in the Azm-treated group than in the COPD, saline-treated, and Lev-treated groups. VEGFR2 protein expression was higher in the Azm-treated group than in the COPD, saline-treated, and Lev-treated groups.
Conclusions: Azm attenuates pulmonary emphysema by partly reversing the decrease in the numbers of inflammatory cells (neutrophil and macrophage) and VEGF secretion and VEGFR2 protein expression in smoking-induced COPD in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4187/respcare.03344 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!