Rationale: Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined.
Objective: To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart.
Methods And Results: We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression.
Conclusions: Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282610 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.115.304457 | DOI Listing |
PLoS One
January 2025
Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
Substantial loss of cardiomyocytes during heart attacks and onset of other cardiovascular diseases is a major cause of mortality. Preservation of cardiomyocytes during cardiac injury would be the most effective strategy to manage these diseases in clinic. However, there is no effective treatment strategy that is able to prevent cardiomyocyte loss.
View Article and Find Full Text PDFCells
December 2024
Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control.
View Article and Find Full Text PDFCells
December 2024
Université Côte d'Azur, CNRS, INSERM, iBV, 06107 Nice, France.
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair.
View Article and Find Full Text PDFCells
December 2024
Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden.
The human heart regenerates slowly through life, but how new cells are generated is mostly unknown. The atrioventricular junction (AVj) has been indicated as a potential stem cell niche region. Little is known about the protein composition of the human AVj.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!