In this study, ordered mesoporous carbon (OMC) with large surface area (1019m(2)g(-1)), uniform mesoporous structure (pore size distribution centering at 4.2nm) and large pore volume (1.46cm(3)g(-1)) was synthesized using 2D hexagonally mesoporous silica MSU-H as the hard template and sucrose as the carbon precursor. The as-synthesized OMC was immobilized onto a stainless steel wire using Nafion as a binder to prepare an OMC/Nafion solid-phase microextraction (SPME) coating. The extraction characteristics of the OMC/Nafion coating were extensively investigated using a wide range of analytes including non-polar (light petroleum and benzene homologues) and polar compounds (amines and phenols). The OMC/Nafion coating exhibited much better extraction efficiency towards all selected analytes than that of a multi-walled carbon nanotubes/Nafion coating with similar length and thickness, which is ascribed to its high surface area, well-ordered mesoporous structure and large pore volume. When the OMC/Nafion coating was used to extract a mixture containing various kinds of analytes, it possessed excellent extraction selectivity towards aromatic non-polar compounds. In addition, the feasibility of the OMC/Nafion coating for application in electrochemically enhanced SPME was demonstrated using protonated amines as model analytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2014.08.094 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
September 2015
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
In this work, an ordered mesoporous carbon (OMC)/Nafion coated fiber for solid-phase microextraction (SPME) was prepared and used as the working electrode for electro-enhanced SPME (EE-SPME) of amphetamines. The EE-SPME strategy is primarily based on the electro-migration and complementary charge interaction between fiber coating and ionic compounds. Compared with traditional SPME, EE-SPME exhibited excellent extraction efficiency for amphetamine (AP) and methamphetamine (MA) with an enhancement factor of 7.
View Article and Find Full Text PDFJ Chromatogr A
October 2014
State key laboratory of heavy oil processing & College of Science, China University of Petroleum (East China), Qingdao 266555, China.
In this study, ordered mesoporous carbon (OMC) with large surface area (1019m(2)g(-1)), uniform mesoporous structure (pore size distribution centering at 4.2nm) and large pore volume (1.46cm(3)g(-1)) was synthesized using 2D hexagonally mesoporous silica MSU-H as the hard template and sucrose as the carbon precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!