Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([18F]T807) and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [18F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FXFN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [18F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [18F]T807 (≈ 500 mCi, radiochemical purity 95%) were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% (n = 3), relative to starting [18F]fluoride (end of bombardment), with high radiochemical purity (≥ 99%) and high specific activities (6 Ci/μmol) in 100 minutes. A clinical research study was carried out with [18F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2310/7290.2014.00025 | DOI Listing |
Molecules
December 2024
Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan.
No effective vaccines or treatments are currently available for severe fever with thrombocytopenia syndrome (SFTS), a fatal tick-borne infectious disease caused by the SFTS virus (SFTSV). This study evaluated the potential of In-labeled anti-SFTSV antibodies targeting SFTSV structural proteins as single-photon emission computed tomography (SPECT) imaging agents for the selective visualization of SFTSV-infected sites. This study used nuclear medicine imaging to elucidate the pathology of SFTS and assess its therapeutic efficacy.
View Article and Find Full Text PDFFolia Med (Plovdiv)
December 2024
Botkin Hospital, Moscow, Russia.
Technetium-99m (99mTc) is a short-lived nanocolloid nuclide widely used by oncologists to diagnose and identify cancer dissemination.
View Article and Find Full Text PDFPharmaceutics
November 2024
State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya Str., Bld. 46, 123098 Moscow, Russia.
Background: Radiochemical purity is a key criterion for the quality of radiopharmaceuticals used in clinical practice. The joint improvement of analytical methods capable of identifying related radiochemical impurities and determining the actual radiochemical purity, as well as the improvement of synthesis methods to minimize the formation of possible radiochemical impurities, is integral to the implementation of high-tech nuclear medicine procedures. PSMA-targeted radionuclide therapy with lutetium-177 has emerged as an effective treatment option for prostate cancer, and [Lu]Lu-PSMA-617 and [Lu]Lu-PSMA have achieved global recognition as viable radiopharmaceuticals.
View Article and Find Full Text PDFA new fusidic acid-loaded hydrogel film was prepared via the solvent casting technique using alginate and Aloe vera. The hydrogel films were optimized using different ratios of sodium alginate, Aloe vera, and glycerin. The films containing 10% glycerin (w/w of alginate) exhibited the best appearance.
View Article and Find Full Text PDFA successful positron emission tomography imaging program involving carbon-11 radiotracers demands fast, efficient, and reliable synthesis methods, requiring an on-site cyclotron and radiochemistry group, as well as clinical staff trained to operate under the unique constraints of the carbon-11 radionuclide. This study examines the merits and advantages of a captive solvent 'loop method' of radiolabeling four tracers with the carbon-11 radionuclide, producing the radioligands [C]ER-176, [C]MRB, [C]mHED, and [C]PiB. The 'loop method' is compared against the traditional reactor-based method of carbon-11 methylation in the course of synthesizing the same radiotracers on the identical automated platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!