A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Semantic Normalization and Query Abstraction Based on SNOMED-CT and HL7: Supporting Multicentric Clinical Trials. | LitMetric

AI Article Synopsis

  • Advances in omic data and biomarkers are increasing complexity in clinical research by requiring multi-institutional studies and emphasizing the need for standardized data representation.
  • A new semantic normalization and query abstraction process has been developed using established biomedical standards and semantic web technologies to enhance data integration and retrieval.
  • Testing within the EURECA EU research project demonstrates that this method improves functionality and query capabilities for clinical trial data, though it may have slightly slower execution speeds.

Article Abstract

Advances in the use of omic data and other biomarkers are increasing the number of variables in clinical research. Additional data have stratified the population of patients and require that current studies be performed among multiple institutions. Semantic interoperability and standardized data representation are a crucial task in the management of modern clinical trials. In the past few years, different efforts have focused on integrating biomedical information. Due to the complexity of this domain and the specific requirements of clinical research, the majority of data integration tasks are still performed manually. This paper presents a semantic normalization process and a query abstraction mechanism to facilitate data integration and retrieval. A process based on well-established standards from the biomedical domain and the latest semantic web technologies has been developed. Methods proposed in this paper have been tested within the EURECA EU research project, where clinical scenarios require the extraction of semantic knowledge from biomedical vocabularies. The aim of this paper is to provide a novel method to abstract from the data model and query syntax. The proposed approach has been compared with other initiatives in the field by storing the same dataset with each of those solutions. Results show an extended functionality and query capabilities at the cost of slightly worse performance in query execution. Implementations in real settings have shown that following this approach, usable interfaces can be developed to exploit clinical trial data outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2014.2357025DOI Listing

Publication Analysis

Top Keywords

semantic normalization
8
query abstraction
8
clinical trials
8
data integration
8
data
7
clinical
6
semantic
5
query
5
normalization query
4
abstraction based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!