We propose a new approach to noninvasively image the 3-D myocardial infarction (MI) substrates based on equivalent current density (ECD) distribution that is estimated from the body surface potential maps (BSPMs) during S-T segment. The MI substrates were identified using a predefined threshold of ECD. Computer simulations were performed to assess the performance with respect to: 1) MI locations; 2) MI sizes; 3) measurement noise; 4) numbers of BSPM electrodes; and 5) volume conductor modeling errors. A total of 114 sites of transmural infarctions, 91 sites of epicardial infarctions, and 36 sites of endocardial infarctions were simulated. The simulation results show that: 1) Under 205 electrodes and 10-μV noise, the averaged accuracies of imaging transmural MI are 83.4% for sensitivity, 82.2% for specificity, 65.0% for Dice's coefficient, and 6.5 mm for distances between the centers of gravity (DCG). 2) For epicardial infarction, the averaged imaging accuracies are 81.6% for sensitivity, 75.8% for specificity, 45.3% for Dice's coefficient, and 7.5 mm for DCG; while for endocardial infarction, the imaging accuracies are 80.0% for sensitivity, 77.0% for specificity, 39.2% for Dice's coefficient, and 10.4 mm for DCG. 3) A reasonably good imaging performance was obtained under higher noise levels, fewer BSPM electrodes, and mild volume conductor modeling errors. The present results suggest that this method has the potential to aid in the clinical identification of the MI substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949484PMC
http://dx.doi.org/10.1109/TBME.2014.2358618DOI Listing

Publication Analysis

Top Keywords

dice's coefficient
12
myocardial infarction
8
equivalent current
8
current density
8
bspm electrodes
8
volume conductor
8
conductor modeling
8
modeling errors
8
infarctions sites
8
imaging accuracies
8

Similar Publications

Article Synopsis
  • Neointimal coverage and stent apposition are critical for improving percutaneous coronary interventions (PCI), but current algorithms struggle with automating the analysis of diverse stent types and preselecting necessary segments.
  • This study introduces TriVOCTNet, a multi-task deep learning model designed to automate the classification, lumen segmentation, and stent strut segmentation in IVOCT images, all within one efficient network.
  • TriVOCTNet demonstrated impressive accuracy with high classification rates and precise segmentation outputs, indicating its potential for enhancing clinical practices in PCI procedures.
View Article and Find Full Text PDF

In recent years, a variety of deep learning networks for cardiac MRI (CMR) segmentation have been developed and analyzed. However, nearly all of them are focused on cine CMR under breathold. In this work, accuracy of deep learning methods is assessed for volumetric analysis (via segmentation) of the left ventricle in real-time free-breathing CMR at rest and under exercise stress.

View Article and Find Full Text PDF

Saliency of breast lesions in breast cancer detection using artificial intelligence.

Sci Rep

November 2023

Departamento de Imágenes Diagnósticas, Universidad Nacional de Colombia, Bogotá, Colombia.

Article Synopsis
  • AI analysis of mammograms shows promise in breast cancer screening, using saliency maps to evaluate the importance of lesions in detection.
  • A study examined data from 191 women with breast cancer and 191 healthy controls, assessing the performance of four deep learning AI systems through ROC curve analysis.
  • Despite the highest-performing AI system achieving a moderate detection rate, it demonstrated very low overlap with actual breast lesions, indicating that AI may utilize broader image features rather than just localized lesions for decision-making.
View Article and Find Full Text PDF

Objectives: We developed a method for a fully automated deep-learning segmentation of tissues to investigate if 3D body composition measurements are significant for survival of Head and Neck Squamous Cell Carcinoma (HNSCC) patients.

Methods: 3D segmentation of tissues including spine, spine muscles, abdominal muscles, subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and internal organs within volumetric region limited by L1 and L5 levels was accomplished using deep convolutional segmentation architecture - U-net implemented in a nnUnet framework. It was trained on separate dataset of 560 single-channel CT slices and used for 3D segmentation of pre-radiotherapy (Pre-RT) and post-radiotherapy (Post-RT) whole body PET/CT or abdominal CT scans of 215 HNSCC patients.

View Article and Find Full Text PDF

Purpose: Convolutional Neural Networks (ConvNets) have quickly become popular machine learning techniques in recent years, particularly in the classification and segmentation of medical images. One of the most prevalent types of brain cancers is glioma, and early, accurate diagnosis is essential for both treatment and survival. In this study, MRI scans were examined utilizing deep learning techniques to examine glioma diagnosis studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!