Two trimetallic coordination complexes were prepared by self-assembly of [W(CN)8](3-) and the Mn(III) Schiff base followed by the addition of a Zn(II) or Fe(II) cationic unit. The octacyanotungstate connects neighboring Mn(III) centers to form a one-dimensional chain. The anionic chain requires cationic units of Zn(II) or Fe(II) to maintain charge balance in the structure. The Zn-containing complex shows ferrimagnetic behavior originating from the antiparallel alignment of W(V) and Mn(III) spins within the chain, which leads to slow magnetic relaxation at low temperatures. For the Fe(II)-containing compound, Fe(II) moieties are integrated into the ferrimagnetic chains, altering their spin states depending on the temperature. It appears that the coexistence of high- and low-spin states in the low temperature regime is responsible for the slower and faster relaxations of the magnetization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic501506s | DOI Listing |
Nat Commun
December 2024
Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
Metal-organic frameworks (MOFs) are a class of porous materials that are of topical interest for their utility in water-related applications. Nevertheless, molecular-level insight into water-MOF interactions and MOF hydrolytic reactivity remains understudied. Herein, we report two hydrolytic pathways leading to either structural stability or framework decomposition of a MOF (ZnMOF-1).
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFInt J Surg
December 2024
Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
Background: Interleaflet haemorrhage (IH) plays a well-recognized detrimental role in calcified aortic valve disease (CAVD). However, IH-induced fibro-osteogenic responses in valvular interstitial cells (VICs) appear to be triggered under specific pathological conditions. Iron deficiency (ID), a common co-morbidity in CAVD, may influence these responses.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!