A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts.

PLoS One

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany.

Published: June 2015

Stoichiometric homeostasis is the ability of an organism to keep its body chemical composition constant, despite varying inputs. Stoichiometric homeostasis therefore constrains the metabolic needs of consumers which in turn often feed on resources not matching these requirements. In a broader context, homeostasis also relates to the capacity of an organism to maintain other biological parameters (e.g. body temperature) at a constant level over ambient environmental variations. Unfortunately, there are discrepancies in the literature and ecological and physiological definitions of homeostasis are disparate and partly contradictory. Here, we address this matter by reviewing the existing knowledge considering two distinct groups, regulators and conformers and, based on examples of thermo- and osmoregulation, we propose a new approach to stoichiometric homeostasis, unifying ecological and physiological concepts. We suggest a simple and precise graphical way to identify regulators and conformers: for any given biological parameter (e.g. nutrient stoichiometry, temperature), a sigmoidal relation between internal and external conditions can be observed for conformers while an inverse sigmoidal response is characteristic of regulators. This new definition and method, based on well-studied physiological mechanisms, unifies ecological and physiological approaches and is a useful tool for understanding how organisms are affected by and affect their environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172659PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107737PLOS

Publication Analysis

Top Keywords

stoichiometric homeostasis
12
ecological physiological
12
regulators conformers
8
physiological
5
homeostasis
5
approach homeostatic
4
homeostatic regulation
4
regulation unified
4
unified view
4
view physiological
4

Similar Publications

Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally.

Plant Divers

November 2024

Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g.

View Article and Find Full Text PDF

The 26S proteasome targets many cellular proteins for degradation during general homeostasis, protein quality control, and the regulation of vital processes. A broad range of proteasome-interacting cofactors thereby modulates these functions and aids in substrate degradation. Here, we solved several high-resolution structures of the redox active cofactor TXNL1 bound to the human 26S proteasome at saturating and sub-stoichiometric concentrations by time resolved cryo-EM.

View Article and Find Full Text PDF

How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis.

Prog Lipid Res

November 2024

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America.

How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol.

View Article and Find Full Text PDF

Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development.

Ecology

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.

Deciphering the linkage between ecological stoichiometry and ecosystem functioning under anthropogenic nitrogen (N) deposition is critical for understanding the impact of afforestation on terrestrial carbon (C) sequestration. However, the specific changes in above- versus belowground stoichiometric asymmetry with stand age in response to long-term N addition remain poorly understood. In this study, we investigated changes in stoichiometry following a decadal addition of three levels of N (control, no N addition; low N addition, 20 kg N ha year; high N addition, 50 kg N ha year) in young, intermediate, and mature stands in three temperate larch plantations (Larix principis-rupprechtii) in North China.

View Article and Find Full Text PDF

The state transition theory suggests that the decline of submerged macrophytes in shallow lakes is closely associated with reduced stoichiometric homeostasis, particularly phosphorus homeostasis (H). The degradation typically progresses from deeper to shallower regions, indicating a potential positive correlation between the deepwater adaptability (DA) and H values of submerged macrophytes. Here, we investigated the distribution pattern of submerged macrophytes across different water depths of Erhai Lake to test this hypothesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!