Local anesthetic sympathectomy restores fMRI cortical maps in CRPS I after upper extremity stellate blockade: a prospective case study.

Pain Physician

Department of Neurology, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Germany; Department for Diagnostic and Interventional Radiology and Nuclear Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Germany; D.

Published: July 2015

Background: Patients with complex regional pain syndrome type I (CRPS I) show a cortical reorganization with contralateral shrinkage of cortical maps in S1. The relevance of pain and disuse for the development and the maintenance of this shrinkage is unclear.

Objective: Aim of the study was to assess whether short-term pain relief induces changes in the cortical representation of the affected hand in patients with CRPS type I.

Study Design: Case series analysis of prospectively collected data.

Methods: We enrolled a case series of 5 consecutive patients with CRPS type I (disease duration 3 - 36 months) of the non-dominant upper-limb and previously diagnosed sympathetically maintained pain (SMP) by reduction of the pain intensity of more than > 30% after prior diagnostic sympathetic block. We performed fMRI for analysis of the cortical representation of the affected hand immediately before as well as one hour after isolated sympathetic block of the stellate ganglion on the affected side.

Statistics: Wilcoxon-Test, paired t-test, P < 0.05.

Results: Pain decrease after isolated sympathetic block (pain intensity on the numerical rating scale (0 - 10) before block: 6.8 ± 1.9, afterwards: 3.8 ± 1.3) was accompanied by an increase in the blood oxygenation level dependent (BOLD) response of cortical representational maps only of the affected hand which had been reduced before the block, despite the fact that clinical and neurophysiological assessment revealed no changes in the sensorimotor function.

Limitations: The interpretation of the present results is partly limited due to the small number of included patients and the missing control group with placebo injection.

Conclusions: The association between recovery of the cortical representation and pain relief supports the hypothesis that pain could be a relevant factor for changes of somatosensory cortical maps in CRPS, and that these are rapidly reversible.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cortical maps
12
cortical representation
12
sympathetic block
12
pain
9
cortical
8
maps crps
8
pain relief
8
representation hand
8
patients crps
8
crps type
8

Similar Publications

Morphological map of the proximal ulna bare area: a computer-assisted anatomical study in relation to olecranon osteotomy.

J Shoulder Elbow Surg

January 2025

Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100044, China; National Center for Trauma Medicine, Peking University People's Hospital, Beijing 100044, China. Electronic address:

Objective: The bare area is defined as a transverse region within the trochlear notch, serving as an optimal entry point for olecranon osteotomy due to the absence of articular cartilage coverage. However, there is limited research on the morphology and location of the bare area, and there is a lack of intuitive visual description. Thus, the purpose of this study is to delineate anatomical features of the bare area and visualize its morphology and refine the olecranon osteotomy approach.

View Article and Find Full Text PDF

Population receptive field (pRF) mapping is a quantitative functional MRI (fMRI) analysis method that links visual field positions with specific locations in the visual cortex. A common preprocessing step in pRF analyses involves projecting volumetric fMRI data onto the cortical surface, typically leading to upsampling of the data. This process may introduce biases in the resulting pRF parameters.

View Article and Find Full Text PDF

Background: Anesthesia can significantly impact positron emission tomography (PET) neuroimaging in preclinical studies. Therefore, understanding these effects is crucial for accurate interpretation of the results. In this experiment, we investigate the effect of [F]-labeled glucose analog fluorodeoxyglucose ([F]FDG) uptake in the brains of rats anesthetized with two commonly used anesthetics for rodents: isoflurane, an inhalation anesthetic, and Hypnorm-Dormicum, a combination injection anesthetic.

View Article and Find Full Text PDF

Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.

View Article and Find Full Text PDF

Analyzing gene-based apoptotic biomarkers in insomnia using bioinformatics.

Medicine (Baltimore)

January 2025

Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Insomnia is increasingly common and poses significant health risks. The aims of this study are to identify apoptosis-related genes and potential biomarkers for insomnia and to find new therapeutic targets. Insomnia gene expression profiles were downloaded from the Gene Expression Omnibus database, and differentially expressed genes in normal and insomnia samples were identified by limma rapid differential analysis, and then the major modular genes with clinical relevance to insomnia were analyzed using the Weighted Gene Co-Expression Network Analysis, and intersections were obtained with the differentially expressed genes as well as with apoptotic gene databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!