Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. The centromeric histone H3 variant, CenH3, is the defining chromatin component of centromeres in most eukaryotes, including animals, fungi, plants, and protists. In this study, using detailed genomic and transcriptome analyses, we show that CenH3 was lost independently in at least four lineages of insects. Each of these lineages represents an independent transition from monocentricity (centromeric determinants localized to a single chromosomal region) to holocentricity (centromeric determinants extended over the entire chromosomal length) as ancient as 300 million years ago. Holocentric insects therefore contain a CenH3-independent centromere, different from almost all the other eukaryotes. We propose that ancient transitions to holocentricity in insects obviated the need to maintain CenH3, which is otherwise essential in most eukaryotes, including other holocentrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359364 | PMC |
http://dx.doi.org/10.7554/eLife.03676 | DOI Listing |
Sci Adv
January 2025
Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
Centromeres are essential for chromosome segregation in eukaryotes, yet their specification is unexpectedly diverse among species and can involve major transitions such as those from localized to chromosome-wide centromeres between monocentric and holocentric species. How this diversity evolves remains elusive. We discovered within-cell variation in the recruitment of the major centromere protein CenH3, reminiscent of variation typically observed among species.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
In most studied eukaryotes, chromosomes are monocentric, with centromere activity confined to a single region. However, the rush family (Juncaceae) includes species with both monocentric (Juncus) and holocentric (Luzula) chromosomes, where centromere activity is distributed along the entire chromosome length. Here, we combine chromosome-scale genome assembly, epigenetic analysis, immuno-FISH and super-resolution microscopy to study the transition to holocentricity in Luzula sylvatica.
View Article and Find Full Text PDFCell
August 2022
Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, NRW 50829, Germany. Electronic address:
The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R.
View Article and Find Full Text PDFNew Phytol
February 2021
Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic.
The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques.
View Article and Find Full Text PDFElife
September 2014
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.
Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. The centromeric histone H3 variant, CenH3, is the defining chromatin component of centromeres in most eukaryotes, including animals, fungi, plants, and protists. In this study, using detailed genomic and transcriptome analyses, we show that CenH3 was lost independently in at least four lineages of insects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!