Electricity generation and wastewater treatment of oil refinery in microbial fuel cells using Pseudomonas putida.

Int J Mol Sci

Department of Earth and Environmental Sciences, National Chung Cheng University 168, University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan.

Published: September 2014

Microbial fuel cells (MFCs) represent a novel platform for treating wastewater and at the same time generating electricity. Using Pseudomonas putida (BCRC 1059), a wild-type bacterium, we demonstrated that the refinery wastewater could be treated and also generate electric current in an air-cathode chamber over four-batch cycles for 63 cumulative days. Our study indicated that the oil refinery wastewater containing 2213 mg/L (ppm) chemical oxygen demand (COD) could be used as a substrate for electricity generation in the reactor of the MFC. A maximum voltage of 355 mV was obtained with the highest power density of 0.005 mW/cm² in the third cycle with a maximum current density of 0.015 mA/cm² in regard to the external resistor of 1000 Ω. A maximum coulombic efficiency of 6 × 10⁻²% was obtained in the fourth cycle. The removal efficiency of the COD reached 30% as a function of time. Electron transfer mechanism was studied using cyclic voltammetry, which indicated the presence of a soluble electron shuttle in the reactor. Our study demonstrated that oil refinery wastewater could be used as a substrate for electricity generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200787PMC
http://dx.doi.org/10.3390/ijms150916772DOI Listing

Publication Analysis

Top Keywords

electricity generation
12
oil refinery
12
refinery wastewater
12
microbial fuel
8
fuel cells
8
pseudomonas putida
8
substrate electricity
8
wastewater
5
electricity
4
generation wastewater
4

Similar Publications

In recent years, formic acid (FA) has garnered attention as a compelling molecule for various chemical and everyday applications Additionally, with recent studies demonstrating direct FA generation through CO2 electrolysis, it can serve as a stable liquid hydrogen carrier. Nevertheless, FA-permeability via semi-permeable ion‑exchange membranes (FA-crossover) still constitutes a major issue in scalable polymer-electrolyte separated zero-gap electrolyzers, limiting the breakthrough of the technology to the larger-scale. Herein we present a holistic route towards understanding the mechanism of FA-crossover in zero-gap cells.

View Article and Find Full Text PDF

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

With contemporary anesthetic drugs, the efficacy of general anesthesia is assured. Health-economic and clinical objectives are related to reductions in the variability in dosing, variability in recovery, etc. Consequently, meta-analyses for anesthesiology research would benefit from quantification of ratios of standard deviations of log-normally distributed variables (e.

View Article and Find Full Text PDF

Object pose estimation is essential for computer vision applications such as quality inspection, robotic bin picking, and warehouse logistics. However, this task often requires expensive equipment such as 3D cameras or Lidar sensors, as well as significant computational resources. Many state-of-the-art methods for 6D pose estimation depend on deep neural networks, which are computationally demanding and require GPUs for real-time performance.

View Article and Find Full Text PDF

Techno-economic dataset for energy market and capacity payment co-optimization in the Dominican Republic's power market.

Data Brief

February 2025

Área de Ciencias Básicas, Instituto Tecnológico de Santo Domingo, 49 Los Próceres Avenue, Santo Domingo 10602, Dominican Republic.

The electric power industry has an impact on fossil fuel consumption, which must be considered in decarbonization strategies. Energy systems optimization modelling can be applied to evaluate policy scenarios in the power sector to accelerate energy transitions. These modelling tools need data to simulate different scenarios in the power system to clarify the design of energy policies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!