Metal and ligand effects on bonding in group 6 complexes of redox-active amidodiphenoxides.

Inorg Chem

Department of Chemistry and Biochemistry and ‡Department of Physics, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States.

Published: October 2014

Group 6 complexes M(ONO)2 (M = Cr, Mo, W; ONO = bis(2-oxy-3,5-di-tert-butylphenyl)amide) are prepared by the reaction of divalent metal halide precursors with Pb(ONO(Q))2. Analogous complexes containing the 2,4,6,8-tetra-tert-butyl-1,9-dioxophenoxazinate ligand (DOPO) are prepared by protonolysis of chromocene with H(DOPO(Q)) or by reaction of Pb(DOPO(Q))2 with M2Br4(CO)8 (M = Mo, W). The molybdenum and tungsten complexes are symmetrical, octahedral compounds for which spectroscopic data are consistent with M(VI) complexes with fully reduced [L(Cat)](3-) ligands. Quantitative analysis of the intraligand bond lengths, by comparison with literature standards, allows calculation of metrical oxidation states (MOS) for the ONO ligands. The MOS values of the tungsten and molybdenum complexes indicate that π donation from the ligand is weak and that differences between the ONO and DOPO ligands are small. In both the solid state and in solution, Cr(DOPO)2 is paramagnetic with localized quinone and semiquinone ligands bound to Cr(III). The geometry and electronic structure of Cr(ONO)2 differ in the solid state and in solution, as determined by crystallography, magnetic measurements, and Cr K-edge X-ray absorption spectroscopy. In solution, the structure resembles that of the DOPO analogue. In contrast, solid Cr(ONO)2 is a singlet, and X-ray absorption near-edge spectroscopy indicates that the chromium is significantly more oxidized in the solid state than in solution. An electronic description compounds to that of the tungsten and molybdenum analogues, but with considerably more charge transfer from the ligand to chromium via π donation, is in agreement with the experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic501222nDOI Listing

Publication Analysis

Top Keywords

solid state
12
state solution
12
group complexes
8
tungsten molybdenum
8
x-ray absorption
8
complexes
6
metal ligand
4
ligand effects
4
effects bonding
4
bonding group
4

Similar Publications

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Directed Evolution of Multicyclic Peptides Using Yeast Display for Sensitive and Selective Fluorescent Analysis of CD28 on the Cell Surface.

Anal Chem

January 2025

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.

View Article and Find Full Text PDF

Standard: Human gastric organoids.

Cell Regen

January 2025

Guangzhou National Laboratory, Guangzhou, 510005, China.

Organoid technology provides a transformative approach to understand human physiology and pathology, offering valuable insights for scientific research and therapeutic development. Human gastric organoids, in particular, have gained significant interest for applications in disease modeling, drug discovery, and studies of tissue regeneration and homeostasis. However, the lack of standardized quality control has limited their extensive clinical applications.

View Article and Find Full Text PDF

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Co-pyrolysis reactions of BBr with SBr at 350 °C yielded the brominated thiaboranes -SBBr (1), -1-SBBr (2) and -SBBr (3), confirmed by high-resolution mass spectrometry, experimental and computational B NMR spectroscopy. The strong Br(σ-hole)⋯Br(ring) attraction has been the decisive energy contribution in the crystal of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!