Self-assembled metallamacrocyclic Cu(II) and Ni(II) complexes of the types [Cu(L1-O,S)]3 (1), [Ni(L1-O,S)]3 (2), [Cu(L2-O,S)]2 (3) and [Ni(L2-O,S)]2 (4) [H2L1 = 3,3,3',3'-tetrabenzyl-1,1'-terephthaloylbis(thiourea) and H2L2 = 3,3,3',3'-tetrabenzyl-1,1'-isophthaloylbis(thiourea)] were synthesized and characterized by analytical, spectroscopic (UV-Vis, FT-IR, mass, (1)H & (13)C NMR and EPR) and single crystal X-ray diffraction techniques. The crystal structures of [Ni(L1-O,S)]3 and [Cu(L2-O,S)(Py)]2 showed the formation of self-assembled 3:3 and 2:2 metallamacrocyclic Cu(II) and Ni(II) complexes respectively. The binding affinity and binding mode of the trinuclear complexes toward CT DNA were determined by UV-Vis spectrophotometric titrations and the fluorescent indicator displacement (FID) assay. The interaction of the ligand (H2L1) and the complexes (1 and 2) with BSA was investigated using UV-Vis and fluorescence spectroscopic methods. Absorption and emission spectral studies indicate that the complexes 1 and 2 interact with CT DNA and BSA protein more strongly than their parent ligand. Both the complexes (1 and 2) cleaved the pBR 322 plasmid DNA in the absence of an external agent. Complex 1 [IC50 = 22.36 (A549) and 10 μM (MCF7)] exhibited higher cytotoxicity than cyclophosphamide against A549 and MCF7 cancer cell lines. The IC50 value of 2 (29.24) is lower in the A549 cell line and slightly higher (18.04) in the MCF7 cell line than that of cyclophosphamide [IC50 = 41.84 (A549) and 11.89 μM (MCF7)].

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt01859aDOI Listing

Publication Analysis

Top Keywords

cuii niii
12
trinuclear complexes
8
self-assembled metallamacrocyclic
8
metallamacrocyclic cuii
8
niii complexes
8
μm mcf7]
8
complexes
7
self-assembled cuii
4
niii metallamacrocycles
4
metallamacrocycles formed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!