PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system.

Beilstein J Nanotechnol

Departamento de Sistemas Físicos, Químicos y Naturales. Universidad Pablo de Olavide, Sevilla, Spain.

Published: September 2014

Camptothecin (CPT; (S)-(+)-4-ethyl-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione) is a highly cytotoxic natural alkaloid that has not yet found use as chemotherapeutic agent due to its poor water-solubility and chemical instability and, as a consequence, no effective administration means have been designed. In this work, camptothecin has been successfully loaded into iron oxide superparamagnetic nanoparticles with an average size of 14 nm. It was found that surface modification of the nanoparticles by polyethylene glycol enables loading a large amount of camptothecin. While the unloaded nanoparticles do not induce apoptosis in the H460 lung cancer cell line, the camptothecin-loaded nanoparticle formulations exhibit remarkable pro-apoptotic activity. These results indicate that camptothecin retains its biological activity after loading onto the magnetic nanoparticles. The proposed materials represent novel materials based on naturally occurring bioactive molecules loaded onto nanoparticles to be used as chemotherapeutic formulations. The procedure seems apt to be extended to other active molecules extracted from natural products. In addition, these materials offer the potential of being further implemented for combined imaging and therapeutics, as magnetic nanoparticles are known to be multifunctional tools for biomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168894PMC
http://dx.doi.org/10.3762/bjnano.5.144DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
12
nanoparticles
7
camptothecin
5
pegylated versus
4
versus non-pegylated
4
non-pegylated magnetic
4
nanoparticles camptothecin
4
camptothecin delivery
4
delivery system
4
system camptothecin
4

Similar Publications

Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.

View Article and Find Full Text PDF

Both photothermal therapy (PTT) and chemodynamic therapy (CDT) are designed to focus their antitumor effect on only the tumor site, thereby minimizing unwanted severe damage to healthy tissue outside the tumor. However, each monotherapy is limited in achieving complete tumor eradication, resulting in tumor recurrence. The combination of multiple therapies may help to overcome the limitations of single therapy, improve the chances of complete tumor eradication, and reduce the risk of recurrence.

View Article and Find Full Text PDF

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

A novel cellulose-derived graphite carbon/ZnO composite by atomic layer deposition as an over-wideband microwave absorbent.

Phys Chem Chem Phys

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.

It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!