Fast Step Transition and State Identification (STaSI) for Discrete Single-Molecule Data Analysis.

J Phys Chem Lett

Department of Chemistry, Rice University, MS 60, Houston, Texas 77251-1892, United States ; Department of Electrical and Computer Engineering, Rice Quantum Institute, Rice University, MS 60, Houston, Texas 77251-1892, United States.

Published: September 2014

We introduce a step transition and state identification (STaSI) method for piecewise constant single-molecule data with a newly derived minimum description length equation as the objective function. We detect the step transitions using the Student's test and group the segments into states by hierarchical clustering. The optimum number of states is determined based on the minimum description length equation. This method provides comprehensive, objective analysis of multiple traces requiring few user inputs about the underlying physical models and is faster and more precise in determining the number of states than established and cutting-edge methods for single-molecule data analysis. Perhaps most importantly, the method does not require either time-tagged photon counting or photon counting in general and thus can be applied to a broad range of experimental setups and analytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167035PMC
http://dx.doi.org/10.1021/jz501435pDOI Listing

Publication Analysis

Top Keywords

single-molecule data
12
step transition
8
transition state
8
state identification
8
identification stasi
8
data analysis
8
minimum description
8
description length
8
length equation
8
number states
8

Similar Publications

Sex differences in the relationships between 24-h rest-activity patterns and plasma markers of Alzheimer's disease pathology.

Alzheimers Res Ther

December 2024

Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.

Background: Although separate lines of research indicated a moderating role of sex in both sleep-wake disruption and in the interindividual vulnerability to Alzheimer's disease (AD)-related processes, the quantification of sex differences in the interplay between sleep-wake dysregulation and AD pathology remains critically overlooked. Here, we examined sex-specific associations between circadian rest-activity patterns and AD-related pathophysiological processes across the adult lifespan.

Methods: Ninety-two cognitively unimpaired adults (mean age = 59.

View Article and Find Full Text PDF

It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Background: This study examined the relationship between neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) and cognition in people living with HIV (PLWH) at baseline and over time.

Methods: Plasma and clinical data were available from PLWH aged ≥45 years with HIV RNA <200 copies/mL enrolled in the AIDS Clinical Trials Group HAILO cohort study. We measured plasma NfL and GFAP using a single molecule array platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!