Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for cancer imaging and detection in living systems. However, cancer NIR fluorescent sensors are very challenging to develop because they are required to exhibit good specificity and low toxicity as an eligible contrast agent. Here, we describe the synthesis of a new heptamethine indocyanine dye (NIR-27) modified with a glycine at the end of each N-alkyl side chain, and its biological characterization for in vivo cancer-targeted NIR imaging. In addition to its high specificity, NIR-27 also shows lower cytotoxicity than indocyanine green, a nonspecific NIR probe widely used in clinic. These characteristics suggest that NIR-27 is a promising prospect as a new NIR fluorescent sensor for sensitive cancer detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166911 | PMC |
http://dx.doi.org/10.2147/DDDT.S65696 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.
Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.
Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Laboratorio de Terapias Fotoasistidas, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín and CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Photodynamic inactivation (PDI) combines the use of photosensitizers with visible light to produce reactive oxygen species that effectively eliminate pathogens. To investigate the impact of near- infrared therapy (NIRT) on heme biosynthesis and permeability of the pro-photosensitizers 5-aminolevulinic acid (ALA) and Hexyl-ALA (H-ALA) through biofilms, we applied sub-lethal conditions for both NIRT and PDI to maintain intact bacterial viability. During NIRT, the temperature remained below 37°C, permitting rapid heating (ΔT = 11°C) without causing thermal damage.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Institute of Materia Medica Chinese Academy of Sciences, State Key Laboratory of Drug Research, CHINA.
The fluorescent imaging of pathologically accumulated β-amyloid (Aβ) proteins is of significant importance to the diagnosis of Alzheimer's disease (AD). In the paper, we prepared two new NIR probes, NIR-1 and NIR-2, through hydrophilic modification of introducing water-soluble bioactive groups such as polyethylene glycol (PEG) and morpholine to tune in vivo pharmacokinetics for specific detection of soluble and insoluble Aβ species. The in vitro assessments confirm that both NIR-1 and NIR-2 display strong near-infrared (NIR) fluorescence (FL) enhancement upon association with Aβ42 monomers, oligomers or aggregates (λem > 670 nm) and show high sensitive, rapid and selective response towards Aβ42 species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!