Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity.

Philos Trans A Math Phys Eng Sci

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Published: October 2014

We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2014.0018DOI Listing

Publication Analysis

Top Keywords

gain nonlinearity
8
discrete solitons
8
modes pinned
8
cubic loss
8
pinned
4
pinned modes
4
modes two-dimensional
4
two-dimensional lossy
4
lossy lattices
4
lattices local
4

Similar Publications

Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.

View Article and Find Full Text PDF

The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.

View Article and Find Full Text PDF

The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

To our knowledge, we report the first experimental demonstration of gain-managed nonlinear (GMN) amplification of femtosecond pulses in an erbium-doped fiber amplifier (EDFA). We investigated the GMN amplification using two different seed sources, operating at wavelengths of 1530 and 1560 nm. We obtained broadband output spectra spanning the entire C- and L-bands (1530-1620 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!