Residues Phe103 and Phe149 are critical for the co-chaperone activity of Bacillus licheniformis GrpE.

Int J Biol Macromol

Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan. Electronic address:

Published: January 2015

A tryptophan-free Bacillus licheniformis nucleotide exchange factor (BlGrpE) and its Trp mutants (F70W, F103W, F149W, F70/103W, F70/149W, F103/149W and F70/103/149W) were over-expressed and purified to near homogeneity. Simultaneous addition of B. licheniformis DnaJ, NR-peptide and individual variants synergistically stimulated the ATPase activity of a recombinant DnaK (BlDnaK) from the same bacterium by 3.1-14.7-fold, which are significantly lower than the synergistic stimulation (18.9-fold) of BlGrpE. Protein-protein interaction analysis revealed that Trp mutants relevant to amino acid positions 103 and 149 lost the ability to bind BlDnaK. Circular dichroism measurements indicate that F70W displayed a comparable level of secondary structure to that of BlGrpE, and the wild-type protein and the Trp mutants as well all experienced a reversible behavior of thermal denaturation. Guanidine hydrochloride (GdnHCl)-induced unfolding transition for BlGrpE was calculated to be 1.25 M corresponding to ΔG(N-U) of 4.29 kcal/mol, whereas the unfolding transitions of mutant proteins were in the range of 0.77-1.31 M equivalent to ΔG(N-U) of 2.41-4.14 kcal/mol. Taken together, the introduction of tryptophan residue, especially at positions 103 and 149, into the primary structure of BlGrpE has been proven to be detrimental to structural integrity and proper function of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.09.013DOI Listing

Publication Analysis

Top Keywords

trp mutants
12
bacillus licheniformis
8
positions 103
8
103 149
8
structure blgrpe
8
blgrpe
5
residues phe103
4
phe103 phe149
4
phe149 critical
4
critical co-chaperone
4

Similar Publications

Construction of Escherichia coli cell factory for efficient synthesis of indigo.

Chembiochem

January 2025

Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.

Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.

View Article and Find Full Text PDF

Estimating rare event kinetics from molecular dynamics simulations is a non-trivial task despite the great advances in enhanced sampling methods. Weighted Ensemble (WE) simulation, a special class of enhanced sampling techniques, offers a way to directly calculate kinetic rate constants from biased trajectories without the need to modify the underlying energy landscape using bias potentials. Conventional WE algorithms use different binning schemes to partition the collective variable (CV) space separating the two metastable states of interest.

View Article and Find Full Text PDF

Elucidation of a distinct photoreduction pathway in class II photolyase.

Proc Natl Acad Sci U S A

January 2025

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.

Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.

View Article and Find Full Text PDF

Programming a bacterial biosensor for directed evolution of tryptophan hydroxylase via high-throughput droplet sorting.

Biosens Bioelectron

March 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China. Electronic address:

The modification of tryptophan hydroxylase (TPH) for the biosynthesis of 5-hydroxytryptophan (5-HTP) has recently become a focus of research. In this study, we established a droplet-based ultrahigh-throughput microfluidic screening platform (DTSP) to improve the industrial properties of TPH, whereas a bacterial biosensor for L-tryptophan (L-Trp) detection was engineered to improve sensitivity. The promoter pJ23111 achieved a strong negative correlation between the L-Trp concentration and the fluorescence output of the biosensor.

View Article and Find Full Text PDF

Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!