Nickel-catalyzed asymmetric reductive cross-coupling between vinyl and benzyl electrophiles.

J Am Chem Soc

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Published: October 2014

A Ni-catalyzed asymmetric reductive cross-coupling between vinyl bromides and benzyl chlorides has been developed. This method provides direct access to enantioenriched products bearing aryl-substituted tertiary allylic stereogenic centers from simple, stable starting materials. A broad substrate scope is achieved under mild reaction conditions that preclude the pregeneration of organometallic reagents and the regioselectivity issues commonly associated with asymmetric allylic arylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210114PMC
http://dx.doi.org/10.1021/ja508067cDOI Listing

Publication Analysis

Top Keywords

asymmetric reductive
8
reductive cross-coupling
8
cross-coupling vinyl
8
nickel-catalyzed asymmetric
4
vinyl benzyl
4
benzyl electrophiles
4
electrophiles ni-catalyzed
4
ni-catalyzed asymmetric
4
vinyl bromides
4
bromides benzyl
4

Similar Publications

Highly functionalized xanthenes possess an impressive range of bioactivities and daunting synthetic challenge due to their unique ring systems and stereocenters. Here, we report an unprecedented ketyl radicals-induced skeletal rearrangement reaction of spirodihydrobenzofurans, enabled by zero-valent iron as reducing agents via photoredox catalysis, facilitating the facile preparation of various highly functionalized xanthenes. The features of this protocol include high chemo- and regioselectivity, exceptionally mild conditions, a broad substrate scope, scalability to gram-scale quantities, and consistent delivery of good to excellent yields.

View Article and Find Full Text PDF

Dual-ion batteries (DIBs) are garnering immense attention for their capability to operate without the expensive elements required by lithium-ion batteries. Phenylenediamine serves as a versatile and sustainable resource, enabling the efficient preparation of both cathode and anode materials through precise molecular control and straightforward synthesis. The innovative asymmetrical DIBs based on amine-rich poly(phenylenediamine) cathodes and imine-rich poly(phenylenediamine) anodes enable oxidative and reductive states, providing a transition metal-free rechargeable battery.

View Article and Find Full Text PDF

Herein we report a convenient access to asymmetrically substituted, well soluble pentacene derivatives synthesized from commercially available 5,7,12,14-pentacenetetrone via reductive one step functionalization. Zinc or potassium are used as reducing agents and the reduced intermediates are trapped with electrophiles such as acetyl, triisopropylsilyl or cationic methyl synthons. The reduction allows for an unsymmetric functionalization whilst one dione moiety is maintained due to partial reduction.

View Article and Find Full Text PDF

We present a comprehensive account on the evolution of a synthetic platform for a subfamily of ent-pimaranes. For the most complex member, norflickinflimiod C, five distinct strategies relying on either cationic or radical polyene cyclizations to construct the requisite tricyclic carbon scaffold were explored. Insights from early and late stage oxidative and reductive dearomatization studies ultimately led to a mild, rhodium-catalyzed arene hydrogenation for the final synthetic route.

View Article and Find Full Text PDF

Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes.

J Am Chem Soc

December 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused -heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!