Spinal muscular atrophy is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The loss of alpha motor neurons in the ventral horn of the spinal cord results in progressive paralysis and premature death. There is no current treatment other than symptomatic and supportive care, although over the past decade, there has been an outstanding advancement in understanding the genetics and molecular mechanisms underlying the physiopathology of SMA. The most promising approach, from current trials, is the use of antisense oligonucleotide (ASOs) to redirect SMN2 translation and increase exon 7 inclusion in the majority of the RNA transcript, to increase the production of fully functional SMN protein. Recently, ISIS Pharmaceuticals Inc. (2855 Gazelle Court, Carlsbad CA 92010) reported an interim analysis from a multiple dose study in children with SMA between 2 and 14 years of age, using ASO therapy. The results indicated good tolerability at all dose levels, increases in muscle function in children treated with multiple doses of ISIS-SMNRx, and increase in SMN protein levels in cerebrospinal fluid (CSF) from both single and multiple dose studies. Studies in infants are ongoing in a few centers; soon other institutions may begin enrollment. Infants are fragile and their disease process may differ from the older SMA population. It is not known whether effective drug would best be given to SMA infants or older children. Other promising therapies are still in preclinical phases or early clinical phases. Gene therapy appears to be efficient in improving survival in a severe mouse model of SMA, though a better definition of the route of administration and of the safety profile of the viral vectors is needed before clinical administration is possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11940-014-0316-3 | DOI Listing |
Heliyon
January 2025
Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain.
Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.
Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).
Mol Metab
January 2025
Department of Biological Chemistry, University of California, Irvine School of Medicine. Electronic address:
Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, No 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.
Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.
The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!