Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.

Adv Mater

Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA; X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA.

Published: November 2014

The evolution of crystallite size and microstrain in DNA-mediated nanoparticle superlattices is dictated by annealing temperature and the flexibility of the interparticle bonds. This work addresses a major challenge in synthesizing optical metamaterials based upon noble metal nanoparticles by enabling the crystallization of large nanoparticles (100 nm diameter) at high volume fractions (34% metal).

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201402548DOI Listing

Publication Analysis

Top Keywords

nanoparticle superlattices
8
oligonucleotide flexibility
4
flexibility dictates
4
dictates crystal
4
crystal quality
4
quality dna-programmable
4
dna-programmable nanoparticle
4
superlattices evolution
4
evolution crystallite
4
crystallite size
4

Similar Publications

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled CuO-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum.

View Article and Find Full Text PDF

Synthesizing nanoparticle superlattices (NPSLs) with different symmetries is of great interest due to their impact on the collective emergent properties and potential applications. While several parameters have been identified as determinants for forming different symmetries of NPSLs, the high core dispersity, softness, and ligand interpenetration were proposed to drive the formation of the C14 Frank-Kasper (C14) structure like MgZn-type. Here, we report that the C14 phase can be formed in highly monodisperse one-size spherical nanoparticles (NPs) by controlling the interplay among their softness and ligand grafting density.

View Article and Find Full Text PDF

Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS.

Nano Lett

January 2025

Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Interparticle ligand exchange can occur during the formation of nanoparticle superlattices (NPSLs), affecting the symmetry of the NPSLs. Here, we report time-resolved small-angle neutron scattering (TR-SANS) measurements of the interparticle exchange kinetics of thiolate ligands among gold nanoparticles (AuNPs) at different temperatures. To track the ligand exchange among AuNPs, two groups of AuNPs were functionalized with hydrogenated and deuterated dodecanethiol, respectively, and then mixed in a solvent mixture of toluene and deuterated toluene for shell contrast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!