Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171095 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106719 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!