Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A conceptually new all-solid-state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β-Co(OH)2 single layers with five-atoms layer thickness were synthesized through an oriented-attachment strategy. The increased density-of-states and 100 % exposed hydrogen atoms endow the β-Co(OH)2 single-layers-based electrode with a large capacitance of 2028 F g(-1) . The corresponding all-solid-state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg(-1) at an ultrahigh power density of 17 981 W kg(-1) . Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high-energy storage nanodevices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201407836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!