The temporal envelope of speech is important for speech intelligibility. Entrainment of cortical oscillations to the speech temporal envelope is a putative mechanism underlying speech intelligibility. Here we used magnetoencephalography (MEG) to test the hypothesis that phase-locking to the speech temporal envelope is enhanced for intelligible compared with unintelligible speech sentences. Perceptual "pop-out" was used to change the percept of physically identical tone-vocoded speech sentences from unintelligible to intelligible. The use of pop-out dissociates changes in phase-locking to the speech temporal envelope arising from acoustical differences between un/intelligible speech from changes in speech intelligibility itself. Novel and bespoke whole-head beamforming analyses, based on significant cross-correlation between the temporal envelopes of the speech stimuli and phase-locked neural activity, were used to localize neural sources that track the speech temporal envelope of both intelligible and unintelligible speech. Location-of-interest analyses were carried out in a priori defined locations to measure the representation of the speech temporal envelope for both un/intelligible speech in both the time domain (cross-correlation) and frequency domain (coherence). Whole-brain beamforming analyses identified neural sources phase-locked to the temporal envelopes of both unintelligible and intelligible speech sentences. Crucially there was no difference in phase-locking to the temporal envelope of speech in the pop-out condition in either the whole-brain or location-of-interest analyses, demonstrating that phase-locking to the speech temporal envelope is not enhanced by linguistic information.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_00719DOI Listing

Publication Analysis

Top Keywords

temporal envelope
36
speech temporal
24
speech
20
speech intelligibility
16
envelope speech
12
phase-locking speech
12
speech sentences
12
temporal
11
envelope
9
phase-locking temporal
8

Similar Publications

Spatial-temporal characteristics and drivers of urban built-up areas land low-carbon efficiency in China.

Sci Rep

January 2025

School of Business Administration / Research Center for Energy Economics, Henan Polytechnic University, Jiaozuo, Henan, 454003, China.

Understanding the evolution of low-carbon efficiency in urban built-up areas is essential for developing countries striving to meet sustainable development goals. However, the mechanisms driving low-carbon efficiency and the associated development pathways remain underexplored. This study applies the Global Data Envelopment Analysis (DEA) model, the Global Malmquist-Luenberger Index, and econometric models to evaluate low-carbon efficiency and its determinants across China's urban built-up areas from 2010 to 2022.

View Article and Find Full Text PDF

Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.

eNeuro

January 2025

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.

View Article and Find Full Text PDF

Multi-talker speech intelligibility requires successful separation of the target speech from background speech. Successful speech segregation relies on bottom-up neural coding fidelity of sensory information and top-down effortful listening. Here, we studied the interaction between temporal processing measured using Envelope Following Responses (EFRs) to amplitude modulated tones, and pupil-indexed listening effort, as it related to performance on the Quick Speech-in-Noise (QuickSIN) test in normal-hearing adults.

View Article and Find Full Text PDF

French and German poetry are classically considered to utilize fundamentally different linguistic structures to create rhythmic regularity. Their metrical rhythm structures are considered poetically to be very different. However, the biophysical and neurophysiological constraints upon the speakers of these poems are highly similar.

View Article and Find Full Text PDF

Speech comprehension involves detecting words and interpreting their meaning according to the preceding semantic context. This process is thought to be underpinned by a predictive neural system that uses that context to anticipate upcoming words. Recent work demonstrated that such a predictive process can be probed from neural signals recorded during ecologically-valid speech listening tasks by using linear lagged models, such as the temporal response function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!