Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2014.08.106 | DOI Listing |
NPJ Digit Med
January 2025
Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, South Korea.
Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health marker. This study examines PM (aerodynamic diameters <1 μm), PM (≥1 μm and <2.5 μm), and PM (≥2.
View Article and Find Full Text PDFSci Rep
January 2025
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry-CIQSO, University of Huelva, E21007, Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, E21007, Huelva, Spain.
Emissions of metals and metalloids as a result of industrial processes, entail a great risk to human health. A high time resolution study on arsenic levels in PM in the city of Huelva (SW Spain) was carried out between September 2021 and September 2022. Hourly data obtained with a near real-time technique based on X-ray fluorescence were inter-compared with other offline analytical instrumentation.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China.
Accurate predictions of atmospheric particulate matter can be applied in providing services for air pollution prevention and control. However, the forecasting accuracy of traditional air quality models is limited owing to model uncertainties. In this study, we developed a deep learning model, named multiscale depth-separable UNet (MDS-UNet), to improve PM and PM concentration forecasts from WRF_Chem over China.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China. Electronic address:
Background: The concurrent effects of particulate matter (PM) on both blood pressure (BP) and short-chain fatty acids (SCFAs) are insufficiently explored, with limited research on the potential mediating roles of SCFAs.
Methods: In this prospective panel study with 4 follow-ups, we recruited 40 college students in Hefei, China, to assess the impacts of short-term exposure to PM (aerodynamic diameter ≤10 μm (PM), ≤2.5 μm (PM), and ≤1 μm (PM)) on BP and SCFAs, along with potential mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!