Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air.

Sci Total Environ

Embassy of Japan in Sri Lanka, No. 20 Gregory's Road, Colombo 7, Sri Lanka. Electronic address:

Published: December 2014

Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.08.106DOI Listing

Publication Analysis

Top Keywords

pm10 24-h
8
98% days
8
inhalable enriched
8
inhalable
7
inhalable desert
4
desert dust
4
urban
4
dust urban
4
urban emissions
4
emissions biotoxic
4

Similar Publications

Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health marker. This study examines PM (aerodynamic diameters <1 μm), PM (≥1 μm and <2.5 μm), and PM (≥2.

View Article and Find Full Text PDF

Using low-cost sensors to assess common air pollution sources across multiple residences.

Sci Rep

January 2025

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area.

View Article and Find Full Text PDF

Application of a near real-time technique for the assessment of atmospheric arsenic and metals emissions from a copper smelter in an urban area of SW Europe.

Environ Pollut

December 2024

Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry-CIQSO, University of Huelva, E21007, Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, E21007, Huelva, Spain.

Emissions of metals and metalloids as a result of industrial processes, entail a great risk to human health. A high time resolution study on arsenic levels in PM in the city of Huelva (SW Spain) was carried out between September 2021 and September 2022. Hourly data obtained with a near real-time technique based on X-ray fluorescence were inter-compared with other offline analytical instrumentation.

View Article and Find Full Text PDF

Accurate predictions of atmospheric particulate matter can be applied in providing services for air pollution prevention and control. However, the forecasting accuracy of traditional air quality models is limited owing to model uncertainties. In this study, we developed a deep learning model, named multiscale depth-separable UNet (MDS-UNet), to improve PM and PM concentration forecasts from WRF_Chem over China.

View Article and Find Full Text PDF

Ambient PMs pollution, blood pressure, potential mediation by short-chain fatty acids: A prospective panel study of young adults in China.

Ecotoxicol Environ Saf

November 2024

Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China. Electronic address:

Background: The concurrent effects of particulate matter (PM) on both blood pressure (BP) and short-chain fatty acids (SCFAs) are insufficiently explored, with limited research on the potential mediating roles of SCFAs.

Methods: In this prospective panel study with 4 follow-ups, we recruited 40 college students in Hefei, China, to assess the impacts of short-term exposure to PM (aerodynamic diameter ≤10 μm (PM), ≤2.5 μm (PM), and ≤1 μm (PM)) on BP and SCFAs, along with potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!