In this paper we present a new discriminative approach to achieve consistent and efficient tracking of non-rigid object motion, such as facial expressions. By utilizing both spatial and temporal appearance coherence at the patch level, the proposed approach can reduce ambiguity and increase accuracy. Recent research demonstrates that feature based approaches, such as constrained local models (CLMs), can achieve good performance in non-rigid object alignment/tracking using local region descriptors and a non-rigid shape prior. However, the matching performance of the learned generic patch experts is susceptible to local appearance ambiguity. Since there is no motion continuity constraint between neighboring frames of the same sequence, the resultant object alignment might not be consistent from frame to frame and the motion field is not temporally smooth. In this paper, we extend the CLM method into the spatio-temporal domain by enforcing the appearance consistency constraint of each local patch between neighboring frames. More importantly, we show that the global warp update can be optimized jointly in an efficient manner using convex quadratic fitting. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid facial motion tracking on the videos of clinical patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167730 | PMC |
http://dx.doi.org/10.1016/j.imavis.2009.09.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!