Intracellular space is highly crowded with different biomolecules such as proteins, nucleic acids and ions. Therefore molecular crowding is a crucial factor in determining the structure, stability and function of G-quadruplexs. The effect of crowding on the DNA G-quadruplexes structure and stability has been studied by experimental methods, but it hasn't been known how crowding agents stabilize the G-quadruplex structure in molecular level yet. Here, we present a molecular dynamics investigation over the effect of molecular crowding, imitated here by ethanol, on the stability of G-quadruplex structure both in presence and absence of stabilizing K(+) cations. It was demonstrated that G-quadruplex structure in the water collapses in the absence of this cation, while ethanol stabilizes the structure of G-quadruplex by the excluded volume and decreases the water activity. The presence of ethanol can increase the stability of the Hoogsteen hydrogen bonds within the G-quartet. To understand the importance of cations, simulation has been performed on the cation containing G-quadruplex in the presence of ethanol with different concentrations. Molecular dynamics simulations of the structure and stability of human telomeric G-quadruplex in ethanol containing solution has enhanced our understanding on how the parallel-stranded G-quadruplex is affected in a condition where the water content is reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2014.09.015 | DOI Listing |
Infect Dis (Lond)
January 2025
Department of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
Human Metapneumovirus (HMPV) is a re-emerging respiratory pathogen causing significant morbidity and mortality, particularly among young children, the elderly, and immunocompromised individuals. First identified in 2001, HMPV has since been recognised as a leading cause of acute respiratory tract infections (ARTIs) worldwide. Its transmission occurs through droplets, direct contact, and surface contamination, with crowded spaces and healthcare facilities serving as key environmental amplifiers.
View Article and Find Full Text PDFDrug Resist Updat
January 2025
Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; UCLM Biomedicine Unit Associated to CSIC, Spain; CSIC Conexión-Cáncer Hub, Spain. Electronic address:
Ion homeostasis is critical for numerous cellular processes, and disturbances in ionic balance underlie diverse pathological conditions, including cancer progression. Targeting ion homeostasis is even considered as a strategy to treat cancer. However, very little is known about how ion homeostasis may influence anticancer drug response.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFTzu Chi Med J
September 2024
School of Medicine, Tzu Chi University, Hualien, Taiwan.
Objectives: Gastric cancer (GC) is one of the most malignant tumors. Mounting studies highlighted gastric cancer stem cells (GCSCs) were responsible for the failure of treatment due to recurrence and drug resistance of advanced GC. However, targeted therapy against GCSC for improving GC prognosis suffered from lack of suitable models and molecular targets in terms of personalized medicine.
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
December 2024
Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, USA; Department of Pathology, Yale School of Medicine, 20 York Street, Ste East Pavilion 2-631, New Haven, CT 06510, USA. Electronic address:
Aims: The recent widespread use of electronic health records (EHRs) has opened the possibility for innumerable artificial intelligence (AI) tools to aid in genomics, phenomics, and other research, as well as disease prevention, diagnosis, and therapy. Unfortunately, much of the data contained in EHRs are not optimally structured for even the most sophisticated AI approaches. There are very few published efforts investigating methods for recording discrete data in EHRs that would not slow current clinical workflows or ways to prioritise patient characteristics worth recording.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!