The Pim protein kinases contribute to transformation by enhancing the activity of oncogenic Myc and Ras, which drives significant metabolic changes during tumorigenesis. In this report, we demonstrate that mouse embryo fibroblasts (MEFs) lacking all three isoforms of Pim protein kinases, triple knockout (TKO), cannot tolerate the expression of activated K-Ras (K-Ras(G12V)) and undergo cell death. Transduction of K-Ras(G12V) into these cells markedly increased the level of cellular reactive oxygen species (ROS). The addition of N-acetyl cysteine attenuated ROS production and reversed the cytotoxic effects of K-Ras(G12V) in the TKO MEFs. The altered cellular redox state caused by the loss of Pim occurred as a result of lower levels of metabolic intermediates in the glycolytic and pentose phosphate pathways as well as abnormal mitochondrial oxidative phosphorylation. TKO MEFs exhibit reduced levels of superoxide dismutase (Sod), glutathione peroxidase 4 (Gpx4) and peroxiredoxin 3 (Prdx3) that render them susceptible to killing by K-Ras(G12V)-mediated ROS production. In contrast, the transduction of c-Myc into TKO cells can overcome the lack of Pim protein kinases by regulating cellular metabolism and Sod2. In the absence of the Pim kinases, c-Myc transduction permitted K-Ras(G12V)-induced cell growth by decreasing Ras-induced cellular ROS levels. These results demonstrate that the Pim protein kinases have an important role in regulating cellular redox, metabolism and K-Ras-stimulated cell growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369476 | PMC |
http://dx.doi.org/10.1038/onc.2014.306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!