Signal transduction pathways in the cell require protein-protein interactions (PPIs) to respond to environmental cues. Diverse experimental techniques for detecting PPIs have been developed. However, the huge amount of PPI data accumulated from various sources poses a challenge with respect to data reliability. Herein, we collected ∼ 700 primary antibodies and employed a highly sensitive and specific technique, an in situ proximity ligation assay, to investigate 1204 endogenous PPIs in HeLa cells, and 557 PPIs of them tested positive. To overview the tested PPIs, we mapped them into 13 PPI public databases, which showed 72% of them were annotated in the Human Protein Reference Database (HPRD) and 8 PPIs were new PPIs not in the PubMed database. Moreover, TP53, CTNNB1, AKT1, CDKN1A, and CASP3 were the top 5 proteins prioritized by topology analyses of the 557 PPI network. Integration of the PPI-pathway interaction revealed that 90 PPIs were cross-talk PPIs linking 17 signaling pathways based on Reactome annotations. The top 2 connected cross-talk PPIs are MAPK3-DAPK1 and FAS-PRKCA interactions, which link 9 and 8 pathways, respectively. In summary, we established an open resource for biological modules and signaling pathway profiles, providing a foundation for comprehensive analysis of the human interactome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr5002737 | DOI Listing |
Nat Rev Cancer
January 2025
Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs).
View Article and Find Full Text PDFAAPS J
January 2025
Clinical Pharmacology Modeling and Simulation, Amgen, One Amgen Center Drive, Thousand Oaks, CA, 91320-0777, USA.
Sotorasib is a novel KRAS inhibitor that has shown robust efficacy, safety, and tolerability in patients with KRAS mutation. The objectives of the population pharmacokinetic (PK) analysis were to characterize sotorasib population PK in healthy subjects and patients with advanced solid tumors with KRAS mutation from 6 clinical studies, evaluate the effects of intrinsic and extrinsic factors on PK parameters, and perform simulations to further assess the impact of identified covariates on sotorasib exposures. A two-compartment disposition model with three transit compartments for absorption and time-dependent clearance and bioavailability well described sotorasib PK.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Proton pump inhibitors (PPIs), metabolized by cytochrome P450 (P450) enzymes, are widely used to inhibit gastric acid secretion. This study investigated CYP116B46, a self-sufficient monooxygenase with a reductase domain, to elucidate its interaction with ilaprazole, a PPI. Binding assays and docking simulations indicate that CYP116B46 serves as a suitable model for studying PPI metabolism.
View Article and Find Full Text PDFBMJ Open Gastroenterol
December 2024
Department of English Language, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
Objectives: Our aim was to systematically review the cost-effectiveness of proton pump inhibitor (PPI) therapies and surgical interventions for gastro-oesophageal reflux disease (GORD).
Design: The study design was a systematic review of economic evaluations.
Data Sources: We searched PubMed, Embase, Scopus, and Web of Science for publications from January 1990 to March 2023.
J Biol Chem
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555. Electronic address:
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!