Gravity is the one constant, ubiquitous force that has shaped life on Earth over its 4.8 billion years of evolution. But the sheer inescapability of Earth's gravitational pull has meant that its influence on Earth's organisms is difficult to study. Neutralization of the gravity vector (so-called simulated microgravity) by random movement in three-dimensional space is the best option for Earth-based experiments, with spaceflight alone offering the possibility to assess the effects of an extremely reduced gravitational field (microgravity). However, the technical constraints associated with spaceflight introduce complications that can compromise the interpretation of microgravity experiments. It can be unclear whether changes detected in these experiments reflect additional spaceflight-related stresses (temperature shifts, vibrational effects, radiation exposure, and so on) as opposed to the loss of gravitational force per se. In this issue, Herranz et al. (2010) report a careful study in which the effects of simulated and actual microgravity on gene expression in Drosophila melanogaster were compared and the effects of the flight-associated stresses on the microgravity responses were investigated. A striking finding emerged. The additional stresses associated with the spaceflight experiment altered the response to microgravity. Despite controlling for the effects of these stresses/constraints, the group found that responses to microgravity are much stronger in the stressed/constrained background than in its absence. This interaction of gravity with other environmental influences is a novel finding with important implications for microgravity research and other situations where multiple stress factors are combined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294x.2010.04799.x | DOI Listing |
NPJ Microgravity
January 2025
Department of Biological Science, Boise State University, Boise, ID, 83725, USA.
Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Fundamentale Physik für Metrologie FPM, Physikalisch-Technische Bundesanstalt PTB, Bundesallee 100, 38116 Braunschweig, Germany.
Motivated by the similarity of the mathematical structure of Einstein's general relativity in its weak field limit and of Maxwell's theory of electrodynamics it is shown that there are gravitational analogs of the Josephson effect and the quantum Hall effect. These effects can be combined to derive a gravitational analogue of the electric quantum metrological triangle. The gravitational quantum metrological triangle may have applications in metrology and could be used to investigate the relation of the Planck constant to fundamental particle masses.
View Article and Find Full Text PDFACS Nano
January 2025
NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida 32826, United States.
Advanced electromagnetic interference (EMI) shielding materials are in great demand because of the severe electromagnetic population problem caused by the explosive growth of advanced electronics. Besides superior EMI shielding properties, the mechanical strength of the shielding materials is also critical for some specific application scenarios (e.g.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2024
Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, FL, USA.
Regulation of myocardial mass is key for maintaining cardiovascular health. This review highlights the complex and regulatory relationship between mechanosignaling and myocardial mass, influenced by many internal and external factors including hemodynamic and microgravity, respectively. The heart is a dynamic organ constantly adapting to changes in workload (preload and afterload) and mechanical stress exerted on the myocardium, influencing both physiological adaptations and pathological remodeling.
View Article and Find Full Text PDFNitric Oxide
December 2024
Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:
Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!