When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (=dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.09.039 | DOI Listing |
HGG Adv
October 2024
Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany. Electronic address:
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.
View Article and Find Full Text PDFNature
July 2023
Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature
May 2023
Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature
July 2022
Roslin Institute, University of Edinburgh, Edinburgh, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!