Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage.

Biochem Pharmacol

Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Torre Agustín Arévalo - 7ª Planta (PCTT-ULL), Avda de la Trinidad s/n, 38204 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain. Electronic address:

Published: November 2014

β-Lapachone (β-lap) is a promising antitumour drug currently undergoing clinical trials. Although it is known that β-lap generates reactive oxygen species (ROS), its actual mechanism of action is still controversial. Especially important is to determine whether concomitant DNA or microtubule damage is the key target of its antitumour properties and whether DNA damage is mediated by topoisomerases as previously suggested. Here, we have searched for determinants of β-lap cytotoxicity in the model organism Saccharomyces cerevisiae through a mechanism-driven approach whereby several pathways of the DNA and microtubule integrity responses, as well as the anti-oxidant response, were downregulated and the outcome of β-lap treatment examined. We also included in the analysis several β-lap derivatives expected to modify drug bioavailability and activity. We found that neither topoisomerase II nor microtubules contributed to yeast sensitivity to β-lap and its equitoxic derivative 3-bromo-β-lapachone. Instead, we found that oxidative and related environmental stresses were primarily responsible for toxicity. Accordingly, Yap1, the central transcription factor in the antioxidant response in yeast, together with several components involved in stress tolerance (i.e., Snf1 and Hog1) and chromatin remodelling (i.e., the SWR1 and RSC complexes), played major roles in protection against β-lapachone. Critically, we show that dioxygen enhanced toxicity and that ROS scavengers protected cells from it. Furthermore, we show that both quinones resulted in cell death in a manner which cytologically resembled apoptosis/necrosis. We thus conclude that β-lap is toxic to yeast through massive ROS production that either directly kills the cells or else triggers programmed cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.09.006DOI Listing

Publication Analysis

Top Keywords

dna damage
8
dna microtubule
8
cell death
8
β-lap
7
yeast
4
yeast cytotoxic
4
cytotoxic sensitivity
4
sensitivity antitumour
4
antitumour agent
4
agent β-lapachone
4

Similar Publications

Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC.

View Article and Find Full Text PDF

The present systematic review aims to put together human population studies that include some relationship between genetic polymorphisms and genotoxicity as well as to evaluate the quality of the published studies induced by cigarette smoke exposure in vivo. The present systematic review was built according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Different genotoxicity assays were used by different authors, although the major goal was the genotoxicity assessment by means of micronucleus, comet, sister chromatid exchange, and chromosomal aberration assays.

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!