In recent years, Streptococcus parauberis infection has been an emerging problem in aquaculture in South Korea because of its more frequent isolation than other streptococcal bacteria including Streptococcus iniae. To develop effective treatment and prophylaxis methods against this emerging disease by S. parauberis, it is necessary to understand the underlying pathogenic mechanisms. To uncover the pathogenicity, the mutant strain of S. parauberis with a deleted phosphoglucomutase (PGM) gene which has been known to be an important virulence factor in bacterial pathogens was generated to investigate the relationship between virulence and gene function using an allelic exchange mutagenesis method. Allelic exchange mutagenesis of the phosphoglucomutase gene resulted in phenotype changes including decreased extracellular capsules, reduced buoyancy, increased hydrophobicity and reduced growth. Moreover, the S. parauberis mutant was more sensitive to innate immune clearance mechanisms including serum, mucus and phagocyte killing and could not induce mortality in olive flounder. These phenotype changes and the attenuated virulence of the pathogen to fish could be due to the reduction in capsule production by mutation of the PGM gene. The results provide evidences that phosphoglucomutase expression contributes to S. parauberis virulence in fish by affecting bacterial survival against the host's humoral and cellular defense mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2014.09.012 | DOI Listing |
Front Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
January 2025
From the Division of Trauma and Critical Care, Department of Surgery (K.S.A.), Feinberg School of Medicine, Northwestern University, Illinois; Department of Surgery (K.S.A.), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Department of Organ Surgery and Transplantation (M.A.C.) and Department of Organ Surgery and Transplantation (A.B.), University of Copenhagen, Copenhagen, Denmark; Department of Surgery (W.-Q.W.), Vanderbilt University Medical Center, Tennessee, Nashville; Department of Surgery (A.K.), Columbia University Medical Center, New York; Center for Genetic Medicine (J.P., M.R.-P.), Feinberg School of Medicine, Northwestern University; Department of Anesthesiology (R.J.M.), Rush University Medical Center; Division of Trauma and Critical Care, Department of Surgery (H.B.A.), Feinberg School of Medicine, Northwestern University, Chicago, IL; and Department of Organ Surgery and Transplantation (M.H.S.), University of Copenhagen, Copenhagen, Denmark.
Background: Early and accurate diagnosis of sepsis and the ensuing organ dysfunction remain a challenge in the postoperative setting. Susceptibility to infections, as well as the subsequent immunological response, are driven to some extent by the genetic predisposition of the patient. The purpose of this study was to identify novel genetic variants associated with postoperative sepsis (POS) and surgical site infections (SSIs).
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
Pruning is a common forest-tending method; its purpose is to promote growth and improve the overall stand quality. Poplar is a fast-growing, broad-leaved tree species with high ecological and economic value. It is a common management method to promote its growth by pruning and adjusting the spatial structure of the stand, but its potential regulatory mechanism remains unclear.
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
Faculty of Pharmacy, IFTM University, Lodhipur-Rajput, Moradabad, Uttar Pradesh-244102, India.
Introduction: The pharmaceutical industry has paid a lot of attention to solid lipid nanoparticles (SLN) because they show promising drug delivery vehicles.
Method: This work aimed to design and optimize the SLN of β-sitosterol, a hydrophobic drug, to improve solubility and sustained action. An ultrasonication technique after melting was used to design SLN using a randomized response surface Box-Behnken design (BBD).
Proc Natl Acad Sci U S A
November 2024
Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
The establishment of reproductive barriers such as postzygotic ybrid ncompatibility (HI) remains the key to speciation. Gene duplication followed by differential functionalization has long been proposed as a major model underlying HI, but little supporting evidence exists. Here, we demonstrate that a newborn F-box gene, , of the nematode specifically inactivates an essential phosphoglucomutase encoded by in its sister species and their hybrids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!