Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

Spectrochim Acta A Mol Biomol Spectrosc

Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur 603 203, Tamil Nadu, India.

Published: February 2015

In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.08.114DOI Listing

Publication Analysis

Top Keywords

pure doped
12
grown crystals
12
x-ray diffraction
12
dielectric studies
8
studies pure
8
l-prolinium trichloroacetate
8
crystals
8
single crystals
8
pure metal
8
metal substituted
8

Similar Publications

The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).

View Article and Find Full Text PDF

Boosting Electrocatalytic Hydrogenation of Phenylacetylene via Accelerating Water Electrolysis on a Cr-CuO Surface.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China.

Electrochemical alkyne reduction with HO as a hydrogen source represents a sustainable route for value-added olefin production. However, the reaction efficiency is hampered by the high voltage and low activity of Cu electrodes due to their weak adsorbed hydrogen (*H) generation property. In this article, we present the enhanced electrocatalysis of phenylacetylene to styrene over a highly dispersive Cr-doped CuO nanowire (Cr-CuO) cathode.

View Article and Find Full Text PDF

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF

Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped BiO-based NPs catalyst.

J Environ Manage

January 2025

Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico. Electronic address:

The chemical co-precipitation method was used to synthesize a variety of pure BiO and substituted BiCoCdO NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how varying concentrations of Zn ions affect the optical properties of BaNiZnFeO ferrites, showcasing the ability to tune the band gap through Zn doping.
  • X-ray diffraction (XRD) confirmed that the material maintained a single-phase structure and exhibited changes in grain size and lattice parameters with increased Zn content.
  • UV-visible spectroscopy demonstrated that the band gap and electrical properties improved with higher Zn concentrations, indicating potential uses in optoelectronics and energy storage applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!