Effects of different remediation treatments on crude oil contaminated saline soil.

Chemosphere

State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China. Electronic address:

Published: December 2014

Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2014.08.070DOI Listing

Publication Analysis

Top Keywords

crude oil
20
oil contaminated
16
contaminated saline
16
saline soil
16
remediation treatments
12
effects remediation
8
oil contaminants
8
nitrogen addition
8
bacterial community
8
oil
7

Similar Publications

L. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.

View Article and Find Full Text PDF

This study was conducted to evaluate the health risks related to eating crabs and periwinkles from Southern Nigerian coastal areas that are contaminated by crude oil. Periwinkles and crabs from contaminated locations were tested for Polycyclic aromatic hydrocarbon (PAH) and heavy metal (HM) levels using US-EPA standard, and the health risks to humans of eating these seafood were assessed. 20 samples of periwinkles and crabs were collected from crude oil-polluted coastal areas.

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

The absence of a mercaptan compounds analyzer in natural gas pressure reduction stations (PRS) odorizer leads to inaccuracies in the injection dosage, often resulting in quantities beyond standard limits and consequently increasing odorant consumption. Insufficient odorant levels in natural gas can pose safety risks to consumers, as the gas may become odorless at the end of the pipeline. Therefore, accurate determination of the concentration of key odorant compounds in natural gas can reduce both costs and environmental risks.

View Article and Find Full Text PDF

Understanding the behavior of sand screens is crucial for optimizing sand control strategies and preventing wellbore failure, which can significantly impact reservoir management and production efficiency. This paper presents a comprehensive experimental and numerical modeling study on sand screen performance, aimed at providing insights prior to real-field applications. The study evaluated a 200-μm wire-wrapped screen (WWS) using slurry tests to determine the amount of sand retained, sand produced and retained permeability to assess screen efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!