A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Topological defects around a spherical nanoparticle in nematic liquid crystal: coarse-grained molecular dynamics simulations. | LitMetric

Topological defects around a spherical nanoparticle in nematic liquid crystal: coarse-grained molecular dynamics simulations.

J Chem Phys

Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany and Department of Chemical and Biomolecular Engineering, Engineering Building I, Box 7905, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA.

Published: September 2014

We consider the applicability of coarse-grained molecular dynamics for the simulation of defects in a nematic liquid crystal around a colloidal particle. Two types of colloids are considered, a soft colloid resembling a liquid crystal dendrimer or a similar macromolecule. In addition, a decorated colloid is used which could represent a gold nanoparticle with mesogen-modified surface. For both models we consider homeotropic and tangential anchoring. Precise control of the easy axis on the colloid's surface enables us to focus on specific planar arrangements in the case of a decorated colloid. The nematic phase is modelled explicitly via soft spherocylinders interacting through a potential, suggested by Lintuvuori and Wilson [J. Chem. Phys. 128, 044906 (2008)]. Properties of the nematic phase are studied by computing the Frank elastic constants. In addition, estimates for the nematic-isotropic transition and the coherence length allow us to establish a relation between energy and length scales with respect to experimental systems. Both models exhibit similar defect topologies, namely, that of a Saturn ring and a boojum-type of defect for homeotropic and tangential surface anchoring, respectively. In the decorated colloid model we tune the anchoring strength through the density of the mesogenic shell on the surface. We also found the biaxial boojum defect for the special case of longitudinal planar anchoring. The study demonstrates the potential of coarse-grained simulation methods for studying defects in liquid crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4894438DOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
decorated colloid
12
nematic liquid
8
coarse-grained molecular
8
molecular dynamics
8
homeotropic tangential
8
nematic phase
8
topological defects
4
defects spherical
4
spherical nanoparticle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!