Transition of COM-COP relative phase in a dynamic balance task.

Hum Mov Sci

Department of Kinesiology, The Pennsylvania State University, University Park, USA.

Published: December 2014

The purpose of this study was to investigate whether the coordination between center of mass (COM) and center of pressure (COP) could be a candidate collective variable of a dynamical system that captures the organization of the multi-segmental whole body postural control system. We examined the transition of the COM-COP coordination pattern in a moving platform balance control paradigm. 10 young healthy adults stood on a moving surface of support that within a trial was sinusoidally translated in the anterior-posterior direction continuously scaling up and then down its frequency within the range from 0Hz to 3.0Hz. The COP was derived from a single force platform mounted on the moving surface of support. 4 angular joint motions (ankle, knee, hip, and neck) were measured by a 3D motion analysis system that also allowed COM to be derived. The COM-COP coordination changed from in-phase/anti-phase to anti-phase/in-phase at a certain frequency of the support surface, showed hysteresis as a function of the direction of frequency change and higher variability at the transition region. Conversely, the transition of the ankle-hip coordination consistently occurred at 0.3Hz across subjects with little between or within subject variability as a function of transition frequency and before the COM-COP transition. The findings provide evidence that: (1) the transition of the COM-COP coordination pattern is that of a non-equilibrium phase transition with critical fluctuations and hysteresis; and (2) that COM-COP coupling is a candidate collective variable of the multi-segmental whole body postural control system acting on a redundant postural task.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2014.08.005DOI Listing

Publication Analysis

Top Keywords

transition com-cop
12
com-cop coordination
12
transition
8
candidate collective
8
collective variable
8
multi-segmental body
8
body postural
8
postural control
8
control system
8
coordination pattern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!