Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Inflammatory cells participate in angiogenesis by secreting different molecules that affect endothelial cell functions. We had previously shown that induced tissue factor (TF) expression in activated microvascular endothelial cells (mEC) is able to induce angiogenesis via autocrine regulation. However, the signals that induce TF expression in mEC are not fully known. Here, we demonstrate that monocyte paracrine cross-talk with mECs triggers mEC-TF expression. We have identified that monocyte-secreted Wnt5a induces TF expression in mEC and functionally induces cell monolayer repair and angiotube formation in vitro as well as microvessel formation in vivo. Monocyte-secreted Wnt5a activates FZD5 in mECs, which signals to induce the release of intracellular Ca(2+) and increase NFκB transcription activity and TF gene expression. In sum, Wnt5a secreted by monocytes signals through the noncanonical Wnt-FZD5 pathway in mECs to induce TF expression that induces angiogenesis by autocrine regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmcb/mju036DOI Listing

Publication Analysis

Top Keywords

monocyte-secreted wnt5a
12
microvascular endothelial
8
endothelial cells
8
induces angiogenesis
8
tissue factor
8
angiogenesis autocrine
8
autocrine regulation
8
signals induce
8
induce expression
8
expression mec
8

Similar Publications

Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Inflammatory cells participate in angiogenesis by secreting different molecules that affect endothelial cell functions. We had previously shown that induced tissue factor (TF) expression in activated microvascular endothelial cells (mEC) is able to induce angiogenesis via autocrine regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!