A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249201PMC
http://dx.doi.org/10.1128/AEM.02342-14DOI Listing

Publication Analysis

Top Keywords

strain bg43
12
pseudomonas aeruginosa
8
quinolone signal
8
rhodococcus strain
8
quorum sensing
8
sensing signal
8
hhq hydroxylation
8
rhodococcus
5
pqs
5
hhq
5

Similar Publications

Stress tolerant, plant-associated bacteria can play an important role in maintaining a functional plant microbiome and protecting plants against various (a)biotic stresses. Members of the stress tolerant genus are frequently found in the plant microbiome. RL1 was isolated from and the complete genome was sequenced, annotated and analyzed using different bioinformatic tools.

View Article and Find Full Text PDF

Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43.

View Article and Find Full Text PDF

A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp.

View Article and Find Full Text PDF

African trypanosomes are parasitic flagellates that live in the connective tissues of the host. Trypanosomes must obtain from their host adenine/adenosine and other nucleosides that can be salvaged through enzymatic cleavage. Methylthioadenosine (MTA) is a byproduct of polyamine metabolism, formed from the donation of an aminopropyl moiety by decarboxylated S-adenosylmethionine (dcAdoMet) to form spermidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!