Vascular aging is accompanied by increases in circulatory proinflammatory cytokines leading to inflammatory endothelial response implicated in early atherogenesis. To study the possible role of mitochondria-derived reactive oxygen species (ROS) in this phenomenon, we applied the effective mitochondria-targeted antioxidant SkQ1, the conjugate of plastoquinone with dodecyltriphenylphosphonium. Eight months treatment of (CBAxC57BL/6) F1 mice with SkQ1 did not prevent age-related elevation of the major proinflammatory cytokines TNF and IL-6 in serum, but completely abrogated the increase in adhesion molecule ICAM1 expression in aortas of 24-month-old animals. In endothelial cell culture, SkQ1 also attenuated TNF-induced increase in ICAM1, VCAM, and E-selectin expression and secretion of IL-6 and IL-8, and prevented neutrophil adhesion to the endothelial monolayer. Using specific inhibitors to transcription factor NF-κB and stress-kinases p38 and JNK, we demonstrated that TNF-induced ICAM1 expression depends mainly on NF-κB activity and, to a lesser extent, on p38. SkQ1 had no effect on p38 phosphorylation (activation) but significantly reduced NF-κB activation by inhibiting phosphorylation and proteolytic cleavage of the inhibitory subunit IκBα. The data indicate an important role of mitochondrial reactive oxygen species in regulation of the NF-κB pathway and corresponding age-related inflammatory activation of endothelium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169860 | PMC |
http://dx.doi.org/10.18632/aging.100685 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!