Reactive oxygen species (ROS) accumulation induces oxidative stress and cell damage, which then activates several signaling pathways and triggers inflammatory response. Biliverdin is a natural product of heme metabolism which is converted to bilirubin by the enzyme biliverdin reductase A (BLVRA) which also plays a role in antioxidant activity via the ROS scavenging activity of bilirubin. In this study, we examined the anti-inflammatory and anti-apoptotic effects of Tat-BLVRA protein on lipopolysaccharide (LPS)-induced inflammation in Raw 264.7 macrophage cells. Transduction of Tat-BLVRA protein into Raw 264.7 cells and mice ear tissue was tested by Western blot analysis and immunohistochemical analysis. Tat-BLVRA protein was effective in inhibiting mitogen activated protein kinases (MAPKs), Akt and NF-κB activation, intracellular ROS production and DNA fragmentation. Also, Tat-BLVRA protein significantly inhibited the expression of cytokines, COX-2, and iNOS. In a 12-O-tetradecanoylphobol 13-acetate (TPA)-induced mouse model, mice ears treated with Tat-BLVRA protein showed decreased ear thickness and weight, as well as inhibited MAPKs activation and cytokine expression. Thus we suggested that Tat-BLVRA protein may provide an effective therapeutic agent for inflammatory skin diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2014.09.003DOI Listing

Publication Analysis

Top Keywords

tat-blvra protein
24
raw 2647
12
inflammatory response
8
2647 cells
8
mouse model
8
protein
7
tat-blvra
6
tat-biliverdin reductase
4
reductase inhibits
4
inhibits inflammatory
4

Similar Publications

Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on HO-induced HT-22 cell death and in an animal ischemia model were investigated.

View Article and Find Full Text PDF

Human islet amyloid polypeptide (hIAPP), a major constituent of islet amyloid deposits, induces pancreatic β-cell apoptosis and eventually contributes to β-cell deficit in patients with type 2 diabetes mellitus (T2DM). In this study, Tat-mediated transduction of biliverdin reductase A (BLVRA) was investigated in INS-1 cells to examine whether exogenous supplementation of BLVRA prevented hIAPP-induced apoptosis and dysfunction in insulin secretion in β-cells. Tat-BLVRA fusion protein was efficiently delivered into INS-1 cells in a time- and dose-dependent manner.

View Article and Find Full Text PDF

Tat-biliverdin reductase A inhibits inflammatory response by regulation of MAPK and NF-κB pathways in Raw 264.7 cells and edema mouse model.

Mol Immunol

February 2015

Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea. Electronic address:

Reactive oxygen species (ROS) accumulation induces oxidative stress and cell damage, which then activates several signaling pathways and triggers inflammatory response. Biliverdin is a natural product of heme metabolism which is converted to bilirubin by the enzyme biliverdin reductase A (BLVRA) which also plays a role in antioxidant activity via the ROS scavenging activity of bilirubin. In this study, we examined the anti-inflammatory and anti-apoptotic effects of Tat-BLVRA protein on lipopolysaccharide (LPS)-induced inflammation in Raw 264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!