Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Controlled release of drugs and other cargo from hydrogels has been an important target for the development of next generation therapies. Despite the increasingly strong focus in this area of research, very little of the published literature has sought to develop a fundamental understanding of the role of molecular parameters in determining the mechanism and rate of cargo release. Herein, a series of physically crosslinked hydrogels have been prepared utilizing host-guest binding interactions of cucurbit[8]uril that are identical in strength (plateau modulus), concentration and structure, yet exhibit varying network dynamics on account of the use of different guests for supramolecular crosslinking. The diffusion of molecular cargo through the hydrogel matrix and the release characteristics from these hydrogels were investigated. It was determined that the release processes of the hydrogels could be directly correlated with the dynamics of the physical interactions responsible for crosslinking and corresponding time-dependent mesh size. These observations highlight that network dynamics play an indispensable role in determining the release mechanism of therapeutic cargo from a hydrogel, identifying that fine-tuning of the release characteristics can be gained through rational design of the molecular processes responsible for crosslinking in the carrier hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.08.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!